BAB 1 PENDAHULUAN

1.1 Latar Belakang

Beton adalah bagian terpenting dari suatu konstruksi. Beton dapat digunakan untuk berbagai bangunan, misalnya pada bangunan gedung, bangunan air, jalan raya, dan lainlain. Untuk bangunan gedung, beton digunakan sebagai struktur pondasi, balok, kolom, dan plat lantai. Sedangkan untuk bangunan air beton digunakan untuk saluran drainase, gorong-gorong, bendungan, dan bendung.

Beton yang digunakan untuk material struktur bangunan dituntut memiliki sifat yang kuat dalam menahan beban atau gaya-gaya bekerja. Selain itu, beton juga harus memiliki durabilitas tinggi agar beton tidak cepat rusak dan dapat bekerja sebagai struktur untuk jangka waktu lama. Bukan hanya itu saja, kuat tidaknya bangunan tersebut harus ditentukan dengan teliti oleh arsitek bangunan sekarang. Hal itu menyangkut umur bangunan tersebut bahkan nyawa manusia yang berlindung di bawah bangunan tersebut. Karena meskipun bangunan itu masih baru bisa jadi roboh karena beton tidak dapat menyangga beban dirinya sendiri. Hal tersebut pada umumnya dikarenakan oleh perbandingan yang kurang tepat antara berat beton penyangga bangunan dengan berat maksimal beton tersebut untuk menyangga atau menopang beban itu sendiri. Maksudnya berat beton tersebut juga harus diperhitungkan. Bisa jadi bangunan roboh karena terlalu berat beban beton meskipun bangunan tersebut tanpa muatan beban. Sehingga kita harus jeli memperhitungkan keringanan beton.

Kerang Darah (*Anandara Granosa*) merupakan jenis kerang yang popular di Indonesia. Kelimpahan kerang darah (*Anandara Granosa*) di Indonesia menurut Direktorat Jendral Perikanan Tangkap Indonesia (2012) yaitu 48,994 ton. Kerang darah (*Anandara Granosa*) memiliki beberapa kegunaan, salah satunya adalah diolah sebagai makanan, sehingga cangkang kerang darah (*Anandara Granosa*) yang merupakan bahan sisa produksi makanan dapat menimbulkan limbah yang cukup banyak. Pemanfaatan cangkang kerang darah (*Anandara Granosa*) masih sedikit seperti bahan baku souvenir. Berdasarkan hal tersebut banyak sekali limbang cangkang kerang yang dihasilkan, maka perlu dipikirkan cara-cara penanganan dan pemanfaatannya secara baik. Maka dari itu

penelitian ini ingin melihat potensi cangkang kerang dalam bentuk lain, yaitu Serbuk Cangkan Kerang sebagai substitusi pada agregat halus.

Kapur adalah bahan yang sangat bermanfaat dalam berbagai aktivitas manusia dan relatif murah. Pemanfaatan terbanyak adalah di bidang bangunan dan pertanian. Kapur menjadi bagian dari campuran semen karena memiliki sifat merekatkan.

Superplasticizer adalah bahan tambah yang dimasukkan kedalam beton segar yang berfungsi dapat meningkatkan nilai slump untuk memudahkan workability. Superpasticizer juga dapat meningkatkan mutu beton akibat pengurangan pemakaian air sehingga faktor air semen menjadi lebih rendah dengan slump yang meningkat. Faktor air semen yang merupakan faktor utama mutu beton.

Berdasarkan perihal tersebut, peniliti bertujuan melakukan penelitian tentang "Pengaruh Substitusi Agregat Halus Cangkang Kerang Darah (*Anandara Granosa*) Dan Penambahan Kapur Terhadap Perubahan Kuat Tekan Beton"

Penelitian dengan judul "Pengaruh Substitusi Agregat Halus Cangkang Kerang Darah (*Anandara Granosa*) Dan Penambahan Kapur Terhadap Perubahan Kuat Tekan Beton" adalah untuk memanfaatkan limbah cangkang kerang yang ada di lingkungan sekitar yang untuk nantinya dapat di manfaatkan secara maksimal oleh masyarakat sebagain bahan campuran untuk beton. Oleh karena itu penelitian ini dirasa cukup penting untuk dilakukan dengan harapan dapat memberikan manfaat bagi masyarakat serta mengurangi limbah cangkang kerang.

1.2 Rumusan Masalah

Adapun rumusan masalah sebagai berikut:

- a. Bagaimana proporsi agregat halus cangkang kerang darah yang efisien dalam pencampuran beton?
- b. Apakah pengaruh substitusi serbuk cangkang kerang dan penambahan kapur mempengaruhi nilai slump?
- c. Bagaimana mencari nilai optimal yang bisa digunakan pada campuran beton dengan substitusi agregat halus cangkang kerang darah 1%, 3%, 5% dan penambahan kapur 5% dari berat semen?
- d. Apakah kelebihan dari beton dengan substitusi agregat halus cangkang kerang darah (*Anandara Granosa*) dan penambahan kapur?

1.3 Tujuan Penelitian

Adapun tujuan penelitian ini sebagai berikut :

- a. Menemukan proporsi substitusi agregat halus cangkang kerang darah dan penambahan kapur yang efisien dalam campuran beton.
- b. Mengetahui dampak masing-masing variasi terhadap nilai slump.
- c. Membandingkan beton dengan substitusi agregat halus serbuk cangkang kerang darah dengan persentase 1%, 3%, 5% dan penambahan kapur 5% dari berat semen pada umur 28 hari terhadap beton normal.
- d. Mengetahui kelebihan dari beton dengan substitusi agregat halus cangkang kerang darah dan penambahan kapur.

1.4 Batasan Masalah

Batasan masalah dari penulisan tugas akhir ini akan membahas mengenai kuat tekan beton dengan subtitusi agregat halus cangkang kerang darah, ada beberapa batasan permasalahan sebagai berikut :

- a. Pengujian beton yang dilakukan adalah pengujian kuat tekan.
- Bahan campuran beton yang digunakan adalah serbuk cangkang kerang darah dan kapur
- c. Desain campuran yang digunakan adalah desain beton fc' 30 MPa.
- d. Semen yang digunakan adalah semen Portland Cement Composite (PCC).
- e. Benda uji silinder dengan ukuran 15 cm x 30 cm, permasalahan sebagai berikut dengan persentase substitusi agregat halus cangkang kerang darah dan penambahan kapur dengan komposisi variasi 1% cangkang kerang darah + 5% kapur, 3% cangkang kerang darah + 5% kapur, 5% cangkang kerang darah + 5% kapur, 1% cangkang kerang darah, 3% cangkang kerang darah, dan 5% cangkang kerang darah.
- f. Pengujian kuat tekan benda uji dilakukan pada umur beton 28 hari.

1.5 State Of The Art

Peneliti	Judul	Tahun	Kesimpulan
Muhammad	Pengaruh	2015	Berdasarkan hasil pengujian benda
Hasbi Arbi	Substitusi		uji pada penelitian ini, nilai kuat
	Cangkang Kerang		tekan beton pada variasi 5%, 10%,
	Dengan Agregat		15%, terjadi kenaikan pada variasi
	Halus Terhadap		5% yaitu 26,3 MPa dari beton
	Kuat Tekan Beton		normal yaitu 20,6 MPa.
Neti Rahmawati,	Pengaruh	2021	Pengaruh substitusi cangkang
Irwan Lakawa,	Cangkang Kerang		kerang laut sebagai agregat halus
Sulaiman	Laut Terhadap		terhadap kuat tekan beton dengan
	Kuat Tekan Beton		perendaman 28 hari pada variasi
			$0\% = 253,22 \text{ kg/cm}^2, 15\% = 233,33$
			kg/cm^2 , 20% = 274,07 kg/cm^2 .
Rafki Imani,	Pengaruh	2019	Dari hasil pengujian kuat tekan
Nugrafindo	Penambahan Abu		beton umur 28 hari, kuat tekan
Yanto, Masayuki	Cangkang Kerang		beton normal sebesar 28,78 MPa,
Susiwa	Darah (Anandara		beton 2,5% sebesar 22,89 MPa,
	Granosa) sebagai		beton 5% sebesar 24 MPa, 7,5%
	Agregat Halus		sebesar 23,33 MPa (turun).
	Terhadap Kuat		
	Tekan Beton		
Restu Andika,	Pemanfaatan	2019	Penambahan serbuk limbah
Hendramawat	Limbah Cangkang		cangkang kerang darah dapat
Aski Safarizki	Kerang Dara		meningkatkan kuat tekan 20 MPa
	(Anandara		apabila penaambahan maksimal
	Granosa) Sebagai		7,5% dari persentase agregat halus,
	Bahan Tambah		pada persentase 5% meningkat 10
	Dan Komplemen		MPa, pada persentase 7,5%
	Terhadap Kuat		meningkat 2 Mpa.
	Tekan Beton		

Rofikatul	Pemanfaatan	2020	Penggunaan serbuk kulit kerang
Karimah, Yunan	Serbuk Kulit		hijau sebagai penggantii Sebagian
Rusdianto, Desy	Kerang Sebagai		agregat halus pada beton dapat
Putri Susanti	Pengganti Agregat		menaikkan kuat tekan beton pada
	Halus Terhadap		variasi persentase serbuk kulit
	Kuat Tekan Beton		kerang 5% – 10%.
Nurul Rochmah,	Pengaruh Serbuk	2019	Dari hasil analisis penelitian
Gede Sarya	Batu Kapur		tersebut dapat diperoleh hasil
	Terhadap Uji		optimal berdasar nilai uji tekan
	Tekan Beton		yaitu pada proporsi serbuk kapur
			10% sebesar 12,7 (N/m ²).
Tri Mulyono	Kapur Sebagai	2007	Pada hasil penelitian yang telah
	Bahan Tambah		dilakukan didapatkan hasil
	Untuk Beton		optimum persentase tambahan
	Normal		kapur sebesar 20% menghasilkan
			kuat tekan 22,33 MPa dengan
			kenaikan sebesar 2 MPa dari beton
			normal.

1.6 Sistematika Penulisan

Sistematika penulisan Tugas Akhir ini adalah sebagai berikut :

BAB 1 : Pendahuluan

Bab ini mencangkup latar belakang penelitian, maksud dan tujuan penelitian, metodelogi penelitian, batasan masalah dan sistematika penulisan.

BAB 2: Tinjauan Pustaka

Pada bab ini berisi tentang pengertian dan teori beton secara umum, beton serbuk cangkang kerang, bahan-bahan dasar pembentuk beton, sifat-sifat beton, kuat tekan beton, dan hasil penelitian terkait.

BAB 3: Metodologi Penelitian

Pada bab ini menguraikan tentang pengujian bahan-bahan dasar pembuatan beton, pembuatan benda uji, pengujian slump beton, perawatan benda uji, dan pelaksanaan kuat tekan.

BAB 4 : Analisa Dan Pembahasan

Pada bab ini membahas tentang hasil pengujian benda uji akibat proses pada bab 3 dengan melanjutkan analisis data dengan *Microsoft excel*.

BAB 5 : Penutup

Pada bab ini berisi tentang hasil segala sesuatu mulai dari bab 1 sampai dengan bab 4 yang dijelaskan dalam suatu rangkuman berupa kesimpulan dari peneliti. Serta saran dari peneliti agar penelitian selanjutnya dapat dilakukan lebih baik lagi.