PHOTODEGRADATION OF
METHYLCYCLOHEXANE IN TWO
PHASES WITH MODIFIED-
TITANIA IMMOBILIZED ON
PUMICE

by Ratnawati Ratnawati



International Journal of Technology (2017) 1:27-36
ISSN 2086-9614 © lUTech 2017

PHOTODEGRADATION OF METHYLCYCLOHEXANE IN TWO PHASES WITH
MODIFIED-TITANIA IMMOBILIZED ON PUMICE

Slamet 1*, Oktriantoz, Agung Hendarsa', Ratnawati3, Salim Mustofa®

'Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Ul
Depok, Depok 16424, Indonesia
*Department of Chemical Engineering, Universitas Surya Bogor, Tangerang 15810, Indonesia
‘Department of Chemical Engineering, Institut Teknologi Indonesia, Tangerang 15320, Indonesia
*National Nuclear Energy Agency (BATAN), Kawasan Puspitek, Tangerang 15320, Indonesia

(Received: March 2016 / Revised: November 2016 / Accepted: January 2017)

ABSTRACT

The photocatalytic degradation of methylcyclohexane (MCH) in two phases (aqueous and
vapor) was examined using modified titania that was immobilized on pumice and performed in
the system of a specific condition. The photodegradation system that used a particular
configuration reactor and modified catalyst could facilitate the two-phase photodegradation of
MCH simultaneously. The photocatalyst was prepared by the mechanical mixing of urea and
TiO, P25 with mass ratios of 1:3 and 2:3, respectively and then calcined at 350 and 450°C. This
modified photocatalyst was then immobilized on pumice and finally used for the
photodegradation of MCH. The Infrared spectra studies revealed that modified titania with urea
successfully incorporated a non-metal dopant within the TiO, lattice. The catalyst that spread
evenly across the surface of the pumice can be seen from Scanning Electron Microscope (SEM)
characterization. The loading of 7.5% mass photocatal yst that immobilized on pumice degraded
MCH in two-phases simultaneously during a 120 minute period and can be considered the
optimum condition.
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1. INTRODUCTION

Volatile organic compounds (VOCs) are known to have long-term effects on human health
(United States Environmental Protection Agency, US EPA, 1991), to affect stratospheric ozone
depletion processes (Wiederkehr, 1994), to affect the photochemical formation of tropospheric
ozone (ground-level) in the presence of nitrogen oxides (Atkinson et al., 1985), and to
contribute to the greenhouse effect (Balaji & Murugesan, 2010). One of the VOCs is
methylcyclohexane (MCH). It is a constituent of different fuels (Spain & Somerville, 1985),
used in paint diluents (Kim et al., 2011), in organic synthesis (Campbell, 1987), and as solvents
for cellulose ethers (US EPA, 1991). MCH can also be found in urban atmospheres with a range
of 0.2-0.8 ppbv (Hernandez-Alonso et al., 2011). In this paper, MCH is considered a liquid
waste that is found in some oil wells that contain MCH at high concentrations.

MCH at a high level should be considered volatile and it occurs in two distinct phases that can
be dissolved in water with a small amount up to 14 ppm at 25°C (US EPA, 1991). Herndndez-
Alonso et al. (2011) reported on the photocatalytic oxidation of MCH in a vapor phase using
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TiO,, whereas Hamdy et al. (2012) reported on it in a liquid phase. They successfully degraded
MCH. Thus, to facilitate the photodegradation of MCH in two-phases, a reactor with a
particular configuration is required. This study focused on the degradation of MCH in two-
phases simultaneously, namely the vapor phase and the liquid phase, as this remains
substantially missing in the work of some researchers.

Advanced oxidation processes (AOPs), such as the photocatalysis process or plasma
technology, are efficient novel methods used to accelerate non-selective oxidation, and thus, the
destruction of a wide range of resistant organic substances has occurred. A report on MCH
photodegradation was mentioned earlier. Currently, the most widely used photocatalyst is TiO»
because it presents a relatively high level of photoactivity and is stable, inexpensive, and
innocuous (Ratnawati et al., 2015). Unfortunately, the use of TiO, is limited due to its high
band-gap energy (Eg = 3.2 eV), which requires ultraviolet (UV) light irradiation for its
photocatalytic activity. In contrast, the UV light of the sun accounts for only a small fraction
(3-5%) of the sun’s light spectrum compared to visible light (Wang et al., 2011).

Currently, the photocatalyst application on the site poses a disadvantage due to the difficulty of
infiltration for eliminating particles and recycling the catalyst. Filtration can be reduced by
immobilizing the photocatalyst on a solid support, such as quartz, silica, glass, ceramics,
activated carbon, zeolites, and pumice (Rao et al., 2003). In addition, the immobilization of the
catalyst on pumice can make the catalyst float on the liquid surface so that the photocatalyst,
photon, and pollutant in the aqueous and vapor phases will be in one condition simultaneously.
The last advantage of using a two-phase reactor for MCH degradation is that it is soluble in
water in small concentrations.

In this study, we investigated the photodegradation of MCH in the aqueous and vapor phases
simultancously with modified titania immobilized on pumice. The modified photocatalyst was
prepared by the dry mixing of TiO> P25 with urea and was immobilized on pumice to facilitate
MCH degradation in the two-phases. The catalyst that was immobilized on pumice acted as a
floating device that could be applied to degrade MCH outdoors with sunlight exposure and to
eliminate the filtration processes of the catalyst. All MCH photocatalytic degradation was
carried out in an entirely closed reactor to prevent evaporation, and therefore the
photodegradation of MCH in the two-phases could occur simultaneously.

2. EXPERIMENTAL

2.1. Materials

Commercial powder of TiO> P25 (79% anatase, 21% rutile, specific surface area SSA of 50+15
g.m_z) was obtained from Evonik Industries. Urea from Dabang (Chemical formula: CH4N>O,
MW: 60.06 g.mol ', purity: 94%) was used as the C and N precursors. Methylcyclohexane
(chemical formula: CgH;CH;, MW: 98,19 g. mol assay = 99%) was provided by Merck.
Tetra ethyl ortho silicate (TEOS — chemical formula: Si(OC,Hs)s, MW: 208 g.mol'l, purity
989%) was provided by Sigma Aldrich. Natural pumice was supplied from Bima City, Nusa
Tenggara Barat, Indonesia.

2.2. Preparation of C-N Co-doped TiO,

One gram of urea (dopant source for N and C) was crushed until it became a powder, added into
3 g of TiO, P25, and dry mixed for 5 minutes. The mixture was then calcined in an atmospheric
furnace at 350°C for 2 hours. Subsequently, the sample was cooled to room temperature, and
the washing process was continued. The sample was dipped in a 0.IN hydrochloric acid
solution and sonicated for 30 minutes to break the TiO, aggregates. Then, the sample was
filtrated with 2.5pm of a cellulose membrane filter to separate with its suspended. Next, the
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sample was re-heated in the atmospheric furnace at 350°C for 1 hour, cooled down to room
temperature, and finally sieved with 45 pm of mesh.

TiO, P25 photocatalyst were prepared through a mixing process with urea at various urea:P25
mass ratios (1:3 and 2:3), calcined at 350°C for 2 hours, and denoted as CN-Ti0»-350 and 2CN-
TiO;-350, respectively. For the urea: P25 mass ratio of the 1:3 sample, calcination at a
temperature of 450°C for 2 hours was also performed (denoted as CN-TiO;-450). The last
treatment was done to study the effect of temperature on the decomposition of urea that allows
the dopant of N and C to be incorporated into the TiO, lattice.

2.3. Catalyst Characterization

The surface elemental composition was characterized using the INSPECT-F50 Field Emission
Scanning Electron Microscope (FE-SEM) equipped with energy dispersive X-ray spectroscopy
(EDX). The infrared spectra were obtained using a Shimadzu IR Prestige-21 FTIR and were
recorded as a kalium bromine (KBr) disc (1:10 sample/KBr) over a wavenumber range of 400-
4000 ¢m™'. Raman spectra were obtained in a SENTERRA Dispersive Raman Microscope that
used an Ar laser (785 nm) with an intensity of 10 mW for excitation. X-ray diffraction (XRD)
patterns were measured on a Shimadzu XD-610 diffractometer with Cu K, radiation (A=0.154
nm) over the 20 range of 20-80°. The scan rate used for XRD analysis was set to 2°/min,
whereas the accelerating voltage was 40 kV at an applied current of 40 mA. The UV—vis diffuse
reflectance spectra (DRS) were recorded at room temperature between 200 and 800 nm using a
Shimadzu UV2450 spectrophotometer.

2.4. Photocatalytic Activity Measurement

The photocatalytic degradation of MCH was performed on a particular system that combined a
configuration reactor and modified catalyst. This fully closed pyrex reactor has a volume of 1.2
liters and consists of a photocatalyst immobilized on pumice, on a magnetic stir bar, and in
MCH. The photodegradation process used a high-pressure mercury lamp a Philips HPL-N
(250W) as a photon source featuring approximately 83% of visible light and the rest UV light
(Slamet et al ., 2013).

Moditied photocatalyst immobilized TiO» on pumice with a dimension of 4-6 mm (denoted as
PS) was set in various loading using a dip coating method. The photocatalyst CN-Ti0,-350 and
pumice were placed in a solution of TEOS (0.23 vol%) as the silica source (denoted as CN-

Ti0»-350/PS).

The photodegradation of MCH began with 60 pmol/L as the initial concentration that was
injected into the reactor containing 30 g of the catalyst CN-TiO,-350/PS and 500 mL of
deionized water. Degradation was started at room temperature, at 28°C, and stirred for 60
minutes without the irradiation of photons to allow the system to reach an adsorption-
desorption equilibrium. Then, an analysis of samples was drawn from the reactor every 30
minutes during all of the processes. The concentration of MCH was analyzed by gas
chromatography with a flame ionization detector (GC-FID Shimadzu 2014, 250°C) using a 30m
length of the capillary column.

3. RESULTS AND DISCUSSION

3.1. FE-SEM/EDX

Figure 1 shows the FE-SEM images for PS and CN-TiO,-350/PS samples. This characteristic
clearly shows that the CN-TiO,-350 photocatalyst closed the surface of pumice. Elemental
compositions of modified TiO» are summarized in Table 1, which is indicates that besides Ti
and O, the elements of N and C were detected on CN-Ti0,-350. The elemental composition of
CN-Ti0,-350/PS showed that the CN-Ti0,-350 photocatalyst had been immobilized on pumice
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because the elemental composition on CN-Ti0,-350/PS consisted of Si, Al, Ca, Na, Fe, and K.

Figure 1 SEM images with magnification of 1200x for (a) pumice; (b) CN-Ti0,-350/PS

Table 1 EDX Results for P25, CN-TiO,, and Pumice (PS)

Element - %o Mass - -
P25 CN-Ti0,-350 CN-Ti0,-450 CN-Ti0,-350/PS
Ti 58.61 50.77 49.79 1593
(0] 41.39 33.48 41.32 52.65
N - 7.28 1.24 9.13
C - 8.47 7.65 14.17
Si - - - 4.29
Al - - - 142
Ca - - - 0.24
Na - - - 1.19
Fe - - - 0.63
K - - - 0.35

The selected range of temperatures used in this study (350 and 450°C) did not significantly
affect the C content of the products. The probable reason for this observation was due to the
relatively low-temperature usage during the sample calcination. On the other hand. the amount
of N seems to be reduced with increasing calcination temperatures. This phenomenon was also
reported by Sato et al. (2005).

3.2. FTIR Spectroscopy

The fourier transform infrared (FTIR) spectra of P25 and C-N co-doped TiO, prepared with
urea and a calcination temperature of 350°C are shown in Figure 2. The absorption band at 1630
em’' is assigned to the bending vibration of surface hydroxyl (surface-adsorbed water
molecules). The peak at around 1719 cm™ is attributed to the presence of carbonate species,
whereas the peak at 1427 cm™ was observed for the C-N co-doped TiO» samples. Meanwhile, a
very weak absorption peak at 1050 em™ is assigned to the N-Ti-O stretching vibration. This
similar observation was reported by Ratnawati et al. (2014). The formation of C-N co-doped
TiO; (C-N-Ti) and N-Ti-O indicated successful N-doping through the replacement of the
oxygen atoms in TiOs. This result is supported by the Raman spectra result (Figure 3).

3.3. Raman Spectroscopy

Figure 3 shows the Raman spectra of the CN-Ti0,-350 and P25 samples. This result supported
the FTIR characterization results demonstrating the existence of the elements of C and N, which
has incorporated into TiO, lattice. The Raman peaks of the Ti-O-Ti network over a 300 - 800
cm'! range are characteristic features of anatase and rutile structures. Raman spectroscopy
analysis reveals the presence of bands at 396, 514, and 636 cm’”, attributed to the Big, Az + By
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and E, anatase active modes (Yang et al., 2010). The peak at 447 em™ indicates the presence of

rutile and calcination treatment at 350°C, causing the amount of rutile to become more than that
found in TiO, P25.
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Figure 2 FTIR spectra of P25 and CN-Ti0,-350
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Figure 3 Raman spectra of P25 and CN-Ti0,-350

The Raman peaks of N-implanted particles became broader than those of the original TiO,
(Figure 3). In the Raman spectra of the layers, the bands at 330 and 550 cm’! are the first-order
scattering of non-stoichiometric titanium nitride (Gyorgy et al., 2002). The low-frequency
scattering at 330 cm™' is caused by acoustical phonons, whereas at around 550 cm™, it is due to
optical phonons. This result is in agreement with the FTIR result that indicated the presence of
N in the TiO; lattice. According to Kiran and Sampath (2012), the peak of Ti-C would arise at
the wavenumber 1078 cm’'. However, in this experiment, this peak was not detected because C
was not bonded to Ti; rather it bonded to N to form C-N co-doped TiO: (C-N-Ti) as previously
reported in the FTIR analysis.

34. X-Ray Diffraction (XRD)

Figure 4 shows the XRD patterns for P25 and C-N-TiO,-350. As Nawawi and Nawi (2014)
observed, no phase transformation occurred for the calcined samples at 350°C. Using the
Debye—-Scherrer formula, the average crystalline size was found to be 20.23 nm and 2129 nm
for P25 and CN-Ti0,-350, respectively. It can be seen that characteristic peaks at 20 = 25.3°
(JCPDS no. 21-1272) and 27.4° (JCPDS no. 21-1276) corresponded to the anatase and rutile
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phases, respectively. This result supports the Raman spectra where each sample consists of the
anatase and rutile phases. Because C and N atoms were incorporated into the CN-Ti0»-350
lattice, the diffraction peaks were not detected, as those atoms were highly dispersed and had a
small amount of content on CN-Ti0,-350 (Ratnawati et al., 2014).

3.5. UV -Vis DRS

Figure 5a shows the UV-Vis diffused reflectance spectra of P25 and CN-Ti0,-350 and Table 2
displays a reduction in their band gap. This phenomenon indicats that the elements of N and C
have been incorporated into the TiO, lattice, and it is assumed that the mid-gap of the N 2p or
N-O levels are located above the valence band of O 2p than a mixture of N 2p states and O 2p.
These results were reported by Di Valentin et al. (2007), which predicted that substitutional and
interstitial N would create the occupied N 2p and N-O states located at 0.14 eV and 0.73 eV
above the O 2p valence band edge, respectively.
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Figure 4 X-ray diffraction patterns for: (a) P25; and (b) CN-T10,-350
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Figure 5 (a) UV-Vis diffused reflectance spectra of P25 and CN-Ti0,-350; and (b) plots of the
transformed Kubelka-Munk

Table 2 Bandgap of titania P25 and CN co-doped TiO;

Modified Photocatal yst Bandgap, Eg (eV)
CN-TiO,-350 3.05
2CN-Ti01-350 295
CN-Ti0,450 3.00
P25 3.25

Figure 5b shows an apparent reduction in the band gap energy for CN-Ti0,-350 (became 3.05
eV) compared to the reference of a typical band gap value for TiO; P25 (3.25 eV). Because CN-
Ti0O»-350 undergoes a reduction in the band-gap unlike TiO, P25, it might show enhanced
photoresponse under visible light.
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The increase of the N:TiO, ratio (2CN-TiO,-350) has a greater effect on the visible light
absorption of TiO, and leads to a monotonic increase in optical absorption (Yang et al., 2010).
Meanwhile an increase in the calcination temperature (CN-Ti0,-450), which affects the band-
gap, was also reported by Nawawi and Nawi (2014).

3.6. Photocatalytic Degradation of MCH

About 60 pmol/L of MCH in the aqueous and vapor phases was degraded by CN-Ti0O,-350/PS,
and it occurred simultaneously because the photocatalyst was floated on the water surface in the
reactor. Figure 6 shows that 1.7 umol/L of MCH was soluble in water and degraded
simultaneously with MCH in the vapor phase, so that after 120 minutes, the conversion of the
liquid phase and vapor phase was 100% and 64%, respectively. Gonzalez et al. (1999) reported
a similar observation, where photodegradation occurred under UV light, yielding an 8.18%
conversion of aqueous MCH. MCH was dissolved in the water in a small concentration so that
it could be degraded 100% by catalyst CN-TiO,-350/PS. The process was started with
adsorption by the photocatalyst in the first 30 minutes before degradation when the light was
on. For the MCH vapor, it may directly degrade when dissolved in water. When the MCH in the
liquid phase is already degraded, the MCH vapor will dissolve in the liquid phase continuously
until the equilibrium absorption of MCH by water is achieved. Hamdy et al. (2012) predicted
that the photocatalytic oxidation of MCH in the liquid phase would generate carboxylate and
carbonate species before entirely converted into CO; and H,O.
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Figure 6 Photodegradation of MCH in aqueous and vapor phases simultaneously with CN-Ti0,-350/PS

Figure 6 depicts that the initial concentration of MCH was more dominant in the vapor phase,
that is, 35 times more than that dissolved in water. Therefore, the next study will focus on the
degradation of MCH in the vapor phase. The photodegradation of MCH vapor with CN-TiO,-
350/PS was better than that with P25/PS, achieving a result of by 55% reduction. Liu et al.
(2007) reported a similar observation, where the photocatalytic activity of MCH occurred under
UV light. This phenomenon proved that decreasing the band-gap energy in the CN-TiO»-
350/PS had an impact on improving the photocatalytic activity in the degradation of MCH.
However the reduction was not maximized, caused by the degradation process’s being carried
out in a closed reactor, thereby limiting the amount of oxygen involved. Martinez et al. (2011)
conducted previous research on reactive species of oxygen deficiency due to the fact that
sufficient moisture in the air inhibits NO photocatalytic degradation at high pollutant
concentrations.

Figure 7 shows that the CN-TiO,-450/PS catalyst has lower photocatalytic activity than does
CN-Ti0--350/PS in the degradation of MCH, even when it is compared to P25/PS. This finding
is possible because, according to the EDX result, the amount of N seems to be reduced with
increasing calcination temperatures. Sato et al. (2005) reported a similar observation. They
indicated that the element of N was not stable when bonded to Ti-O, allowing for
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decomposition along with increasing temperature. It was also observed that the addition of urea
into double (2CN-Ti0»-350/PS) would also reduce the photocatalytic efficiency of the modified
photocatalyst because CN-Ti0,-350/PS degraded better than 2CN-Ti0»-350/PS did. On the one
hand, the N that was incorporated into the TiO; lattice could result in the band-gap’s narrowing
and the red-shift of the absorption edge toward the visible light region that increased its
photocatalytic activity. However, when the N content is higher than the optimum amount, it
could form a large recombination center that eventually reduces its photocatalytic activity
(Nawawi & Nawi, 2014).

% Degradation
cBB8E58838

P25/PS CN-Ti02-350/PS CN-Ti02-450/PS 2CN-Ti02-350/PS
Photocatalysts Variation

Figure 7 Photodegradation of MCH vapor with various types of catalysts after 120 minutes at
initial concentration of 60 pmol/L

Because the photocatalyst CN-Ti0,-350/PS gave the best performance for degrading MCH, this
photocatalyst was used to study the effect of the CN-Ti0;-350 loading variation (0%, 2.5%,
5%, 7.5%, and 10%) on pumice. Figure 8a shows that MCH was degraded for 120 minutes, and
its conclusion can be seen in Figure 8b. The initial concentration of the MCH vapor about — 60
pmol/L — is denoted as Cy, and the ratio of the residual concentration to the initial concentration
is denoted as C/Cy. Pumice with a loading of 0% of CN-Ti0,-350 eliminated MCH by about
49%. This condition indicated that the elimination process occurred due to MCH adsorption by
pumice. Increasing the percentage of the loading CN-Ti0;-350 indicated that more MCH was
degraded, as a greater catalyst amount increases the active surface area of the photocatalyst.
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Figure 8 Effect of CN-Ti0,-350 loading on pumice: (a) changes in concentration; and (b) percentage
of MCH photodegradation (t = 120 min)

The loading of CN-Ti0,-350 from 0% to 10% reaches the maximum photocatalytic activity at a
7.5% loading of CN-Ti0,-350 on pumice (Figure 8b). Increasing the catalyst loading exceeds
the optimum loading, causing the pores of pumice to be closed by the catalyst and therefore
increasing the density of the composite. This reduces the ability of pumice as an adsorbent and
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as a floating media of catalyst support. In addition, Figure 1 shows that the pores of pumice are
closed by the photocatalyst.

4. CONCLUSION

The photocatalytic degradation of MCH in the aqueous and vapor phases occurred
simultaneously with a catalyst immobilized on pumice. The optimum condition of pumice with
a 7.5% modified catalyst that used a 3:1 P25:urea mass ratio and was calcined at 350°C (CN-
Ti0»-350/PS) was used for the degradation of MCH. After 120 minutes of degradation, the
conversion of each liquid phase and vapor phase was 100% and 64%, respectively. In this
study, MCH looks much more dominant in the vapor phase. Under our experimental conditions,
MCH vapor was eliminated by 64% on CN-TiO,-350/PS, whereas it was eliminated by 55% on
P25/PS during a 120-minutes period.
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