BAB 1

PENDAHULUAN

1.1 Latar Belakang

Dalam bidang teknik permesinan, korosi merupakan fenomena yang terjadi pada logam yang menyebabkan penghancuran bahan secara bertahap oleh reaksi kimia dan / atau elektrokimia dengan lingkungannya. Di antara macam korosi yang butuh ditanggapi ketika merencanakan desain mesin adalah korosi galvanik. Korosi galvanik adalah proses elektrokimia di mana satu logam terkorosi dengan logam berbeda ketika berada dalam kontak listrik, dengan adanya elektrolit (biasanya berupa air hujan atau laut). Logam dan paduan yang berbeda memiliki potensi elektroda yang berbeda, dan ketika dua atau lebih kontak dalam elektrolit, satu logam bertindak sebagai anoda dan yang lainnya sebagai katoda. Perbedaan elektropotensi antara reaksi pada dua elektroda tersebut adalah pendorong untuk kecepatan korosi pada logam anoda, yang larut ke dalam elektrolit. Hal ini menyebabkan logam pada anoda terkorosi lebih cepat daripada seharusnya dan sebaliknya korosi pada katoda terhambat. Hal ini biasanya dapat diatasi dengan pelapisan penghalang pada komponen tersebut. Tetapi penghalang tersebut harus memenuhi ketebalan tertentu untuk mencegah porositas, dan untuk bagian komponen yang membutuhkan ukuran dan penempatan yang akurat, ini dapat menjadi masalah. Oleh karena itu, butuh ditemukan lapisan pelindung tipis untuk melindungi komponen-komponen ini dengan lebih baik dari korosi galvanik.

Kemajuan dalam ilmu material telah menentukan beberapa material yang dianggap layak sebagai lapisan pelindung tambahan untuk mengatasi korosi galvanik. Diantaranya merupakan lapisan pelindung yang tersusun oleh partikel keramik dielektrik. Lapisan pelindung keramik dapat memberikan perlindungan terhadap berbagai macam hal seperti korosi, erosi, bahkan termal. Lapisan pelindung keramik dielektrik seperti Al₂O₃ telah

didokumentasi sebagai lapisan pelindung yang baik terhadap korosi. Selain itu, ditemukan BaTiO₃ memiliki kemampuan sebagai lapisan pelindung yang kualitasnya dianggap diatas rata-rata. BaTiO₃ merupakan bahan keramik yang dapat digunakan sebagai insulator listrik, yang memiliki daya rekat yang tinggi terhadap substrat, porositas rendah, dan ketahanan korosi yang tinggi. Dengan Al₂O₃, keramik paduan BaTiO₃-Al₂O₃ digunakan sebagai kapasitor untuk alat elektronik dengan performans yang tinggi. Diusulkan bahwa keramik-keramik ini digunakan karena memliki properti yang diinginkan sebagai lapisan tahan korosi, yang memungkinkan peningkatkan masa pemakaian atau *Serviceability* komponen permesinan yang memiliki kalangan unsur yang berbeda.

Karya ini ditujukan untuk mempelajari dan menentukan keseimbangan komposisi serbuk optimal untuk membentuk lapisan BaTiO₃-Al₂O₃ pada material dengan potensial berbeda untuk melindunginya dari korosi akibat reaksi galvanik dengan membandingkan rasio berat antara kedua bahan dan kemudian mengujinya. Untuk menghasilkan keramik ini dan mengendapkannya terhadap substrat, material Al₂O₃ dan BaTiO₃ disintesis dalam bentuk bubuk dengan metode *Sol-gel*, yang kemudian diendapkan dengan metode *Electrophoretic Deposition* pada material besi berbeda.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas maka permasalahan yang akan dibahas adalah pengujian kemampuan BaTiO₃-Al₂O₃ sebagai lapisan pelindung terhadap korosi galvanik yang mampu merusak komponen dalam permesinan, serta menguji pengaruh rasio berat serbuknya terhadap kemampuan tersebut.

1.3 Tujuan Penulisan

Adapun tujuan dari penulisan ini adalah menganalisa pengaruh rasio berat serbuk komposisi lapisan perlindungan BaTiO₃-Al₂O₃ terhadap korosi galvanik.

1.4 Batasan Masalah

Untuk dapat lebih mengarah dan mencapai tujuan penelitian, maka diperlukan beberapa pembatasan masalah, yaitu :

- 1. Material yang digunakan atau diteliti adalah seng dan tembaga.
- 2. Diasumsikan macam korosi yang terjadi adalah macam korosi seragam.
- 3. Serbuk BaTiO₃ dibentuk dengan proses sintesis metode *Sol-gel*.
- 4. Rasio berat BaTiO₃:Al₂O₃ yang digunakan dalam pengujian adalah 1:1; 1:2; dan 2:1.
- 5. Voltase dan ampere yang digunakan untuk pengendapan sebesar 30 V 40 V dan 1 mA.
- 6. Untuk sintesis BaTiO₃, digunakan proses pemanasan gel dengan temperatur 150 °C selama 1 jam, kemudian proses kalsinasi dengan temperatur 450 °C selama 24 jam, dan terakhir proses sintering dengan temperatur 700 °C selama 2 jam dengan perbandingan C₆H₈O₇: BaTiO₃ sebesar 2:1.
- Serbuk kimia Al₂O₃ diperoleh dari pemasok bahan kimia lokal berlisensi, Merck.
- 8. Pengujian yang dilakukan usai proses pelapisan adalah macam pengujian kehilangan massa sebelum dan sesudah dikenai lingkungan korosi galvanik beserta sesudah dibiarkan 30 hari dalam ruangan lembab.

1.5 Metodologi Penulisan

Dalam metode penelitian tahapan-tahapan dalam penyusunan laporan mengenai pengaruh rasio berat terhadap kemampuan perlindungan terhadap korosi suhu tinggi pada lapisan $BaTiO_3-Al_2O_3$ dilakukan sebagai berikut:

- Studi dan pengumpulan data dari berbagai sumber berupa makalah dan jurnal sebagai ide utama, buku teks serta rujukan lain yang mendukung tulisan ini.
- 2. Observasi pengujian lapangan, peneliti mengumpulkan data dari hasil pengujian secara langsung dalam laboratorium.

1.6 State of the Art

State of the Art mengenai subjek penelitian BaTiO₃-Al₂O₃ tercantum disini. Berikut adalah Tabel 1.1, yang menunjukkan perbandingan jurnal ilmiah yang digunakan dalam penelitian tugas akhir ini.

Tabel 1.1 Tabel Perbandingan Jurnal

No	Penulis	Judul	Metode	Tujuan
1	C. Xiao, H.	Effect of BaTiO3	Rasio Berat	Menentukan
	Zhang, L. Zhu, Z.	addition on	BaTiO ₃ :Al ₂ O ₃ :	sifat mekanis
	Li	mechanical	• 0:1	Al ₂ O ₃ ketika
		properties of	• 0,005:1	ditambahkan
		$BaTiO_3/Al_2O_3$	• 0,01:1	BaTiO ₃
		composite (2013)	• 0,05:1	
			• 0,1:1	
			• 0,2:1	
			Metode	
			Pengendapan:	
			Cold Isostatic	
			Pressing (CIP)	
2	L. Lozano, J.	Morphological	Metode	Meningkatkan
	Barajas, J.	evaluation of	Pengendapan:	resistensi
	Grimaldos, V.	graphite	Electrophoretic	mekanis grafit
	Güiza, S. Blanco	substrates coated	Deposition	terhadap
		with		tegangan geser
		alumina		
		nanoparticles		
		deposited by		
		electrophoresis		
		(2018)		

Tabel 1.1 Tabel Perbandingan Jurnal (Sambungan)

No	Penulis	Judul	Metode	Tujuan	
3	D. Suastiyanti,	Chemical	Sintesis Al ₂ O ₃ :	Menentukan	
	M. T.E.	Formula of Al_xO_y	Temperatur	pengaruh	
	Manawan, S.	on Synthesize Of	Kalsinasi: 320	perlakuan sintering dan	
	Handayani	Al_2O_3 for Buffer	°C selama 4		
		Catalyst by Sol-	jam	kalsinasi	
		Gel Method	Temperatur	dalam sol-gel	
		Based on	Sintering: 420	terhadap rasio	
		Variation of	°C selama 2	berat atom Al /	
		Calcination and	jam	O yang dapat	
		Sintering		mempengaruhi	
		Treatment (2016)		pembentukan	
				katalis	
				penyangga	
				fasa γ-alumina	
4	J. Yao, L. Hu, M.	Synergistic	Metode	Menentukan	
	Zhou, F. You, X.	Enhancement of	Pengendapan:	sifat	
	Jiang, L. Gao, Q.	Thermal	Kompresi & Hot	konduktivitas	
	Wang,	Conductivity and	Blending	termal dan	
	Z. Sun, J. Wang	Dielectric		dielektrik	
		Properties in		komposit	
		$Al_2O_3/BaTiO_3/PP$		Al ₂ O ₃ /BaTiO ₃ /	
		Composites		PP	
		(2018)			
5	E. Bacha, R.	Electrophoretic	Metode	Pengujian	
	Renoud, H.	Deposition of	Pengendapan:	pengendapan	
	Terisse, C.	BaTiO3 thin	Electrophoretic	BaTiO ₃	
	Borderon, M.	films from stable	Deposition	dengan metode	
	Richard-Plouet,	collodial		EPD	
	H. Gundel, L.	aqueous solution			
	Brohan	(2014)			

Tabel 1.1 Tabel Perbandingan Jurnal (Sambungan)

No	Penulis	Judul	Metode 7	Гujuan
6	D. Suastiyanti,	Effects of Citric	Sintesis BaTiO ₃ : Mene	entukan
	M. Wijaya	Acid/BaTiO₃	• Temperatur penga	aruh rasio
		Weight Fractions	Pemanasan berat	antara
		and Time	Gel: 150 °C asam	sitrus dan
		of Sintering in	selama 1 jam BaTi	O ₃ serta
		Sol Gel Process	• Temperatur wakt	u
		on Electric	Kalsinasi: 450 sinter	ring
		Saturization	°C selama 24 dalar	n proses
		Polarization	jam sol-g	el
		Values and	• Temperatur terha	dap
		Phase	Sintering: 700 satur	isasi nilai
		Composition	°C selama 2 polar	risasi
		(2016)	jam listril	k dan fase
			Perbandingan komp	oosisi
			$C_6H_8O_7$:	
			BaTiO ₃	
			sebesar 2:1	

Dari Tabel 1.1 dijelaskan bahwa telah ada beberapa penelitian yang telah mendalami aplikasi BaTiO₃-Al₂O₃ serta beberapa proses pengendapan yang dapat dilakukan untuk menghasilkan lapisan paduan tersebut. Sebuah penelitian yang diterapkan oleh Xiao dkk. (2013), menganalisa sifat mekanis Al₂O₃ yang telah diendapkan BaTiO₃ dengan metode CIP dan menemukan bahwa jika rasio BaTiO₃ dengan Al₂O₃ melebihi 5%, akan menghasilkan *Maximum Break Strength* yang tidak optimal. Penelitian yang diterapkan oleh Suastiyanti dan Wijaya (2016) dan Suastiyanti, Manawan, dan Handayani (2016), dalam upaya menyelesaikan tujuan masing-masing penelitian, menentukan metode sintesis optimal untuk pembentukan serbuk BaTiO₃-Al₂O₃. Penelitian yang dilakukan oleh Yao dkk. (2018) menyatakan BaTiO₃-Al₂O₃ memiliki kemampuan konduktivitas termal dan sifat dielektrik yang

baik. Penelitian yang dilakukan oleh Bacha dkk. (2014) dan Lozano dkk. (2018) menentukan kemampuan BaTiO₃-Al₂O₃ untuk diendapkan dengan metode *Electrophoretic Deposition*.

Semua penelitian tersebut memberikan pondasi untuk penelitian lebih lanjut mengenai BaTiO₃-Al₂O₃ dan proses manufakturnya untuk berbagai macam aplikasi yang dapat ditemukan dengan waktu. Oleh karena itu, kebaruan penelitian ini adalah penggunaan proses *Electrophoretic Deposition* untuk mengendapkan material kedalam substrat, beserta pengujian pengaruh rasio berat komposisi material 1:1, 1:2, dan 2:1, terhadap pendalaman sifat mekanis material dan kemampuan lapisan BaTiO₃-Al₂O₃ dalam melindungi material substratnya dari korosi galvanik.

1.7 Sistematika Penulisan

Sistematika penulisan laporan tugas akhir ini dibagi dalam 5 Bab, antara lain sebagai berikut :

1. BAB 1 : PENDAHULUAN

Berisikan tentang latar belakang permasalahan, pokok permasalahan, tujuan penelitian, pembatasan masalah, metodologi penelitian dan sistematika penulisan.

2. BAB 2 : TINJAUAN PUSTAKA

Menjabarkan teori-teori yang menunjang dan berkaitan dengan permasalahan yang akan dibahas dan dianalisis.

3. BAB 3 : METODE PENELITIAN

Metodologi penelitian, yang mencakup populasi dan sampel penelitian, variabel penelitian, pengumpulan data, dan analisis data.

4. BAB 4 : PERHITUNGAN DAN ANALISA

Membahas dan menganalisa hasil-hasil yang didapat baik dari pengumpulan data maupun dari hasil perhitungan-perhitungan.

5. BAB **5** : PENUTUP

Bab terakhir ini menguraikan tentang penutup yang berisi kesimpulan dari hasil data dan juga berisi saran-saran yang dapat digunakan sebagai bahan pertimbangan.

DAFTAR PUSTAKA

LAMPIRAN