BAB 1

PENDAHULUAN

1.1 Latar Belakang

Perkembangan penyakit Covid-19 (*Corona Virus Disease*) di dunia semakin meningkat secara signifikan per tahun 2021. Kenaikan virus ini terjadi dikarenakan tingkat penyebarannya yang sangat cepat dan virus nya pun tergolong baru dalam ilmu kesehatan dunia. Berdasarkan data Worldometers, total kasus infeksi virus corona di seluruh dunia mencapai 163.694.333 kasus, yang mana diantaranya 3.392.634 orang meninggal dunia dan 142.144.554 orang dinyatakan pulih (Rizal, 2020). Hal ini menunjukkan bahwa virus corona merupakan virus yang sangat berbahaya dan mampu mencuri perhatian dunia saat ini.

Berbagai cara telah dilakukan oleh para petinggi setiap negara maupun organisasi kesehatan dunia untuk mencegah penyebaran virus corona ini. Seperti diberlakukannya lockdown total oleh beberapa negara, penggunaan drone untuk memantau kondisi suatu negara, sampai dengan dilaksanakan nya vaksinasi oleh beberapa negara demi meminimalisir tingkat penyebaran virus corona di dunia. Indonesia pun salah satu negara yang telah menerapkan berbagai kebijakan untuk mengurangi tingkat penyebaran virus ini di berbagai wilayah. Salah satu upaya pemerintah untuk menanggulangi peningkatan virus ini adalah dengan melakukan pengawasan ketat di jalur masuk ke Indonesia dari negara lain meliputi bandara, pelabuhan dan pos lintas batas darat (Gitiyarko, 2020). Selain dengan pengawasan ketat di setiap pelabuhan maupun bandara, pemerintah Indonesia pun melakukan berbagai strategi. Strategi pertama adalah mengkampanyekan kewajiban memakai masker saat berada di ruang publik atau di luar rumah. Strategi kedua adalah penelusuran kontak (tracing) dari kasus positif yang dirawat dengan menggunakan rapid test atau tes cepat. Di antaranya adalah pada orang terdekat, tenaga kesehatan yang merawat pasien Covid-19, serta pada masyarakat di daerah yang ditemukan kasus terbanyak. Strategi ketiga adalah edukasi dan penyiapan isolasi secara mandiri pada sebagian hasil tracing yang menunjukan hasil tes positif dari rapid test atau negatif dengan gejala untuk melakukan isolasi mandiri. Strategi keempat adalah di Rumah Sakit yang dilakukan kala isolasi mandiri tidak mungkin dilakukan, seperti karena ada tanda klinis yang butuh layanan definitif di Rumah Sakit (Yurianto, 2020).

Selain berbagai strategi dan pengawasan ketat yang dilakukan, pemerintah juga menerapkan kebijakan PSBB (Pembatasan Sosial Berskala Besar) di berbagai wilayah zona merah atau daerah yang tingkat penyebaran virus nya sangat tinggi. Kebijakan PSBB yang diberlakukan di berbagai wilayah yaitu membatasi kegiatan-kegiatan masyarakat dan membatasi kuota manusia di berbagai sektor. Masyarakat yang dapat berkegiatan di luar rumah hanya yang bekerja, tenaga kesehatan, dan pekerjaan urgensi lainnya. Masyarakat yang melakukan berbagai kegiatan di luar rumah pun juga harus mematuhi protokol kesehatan yang sudah ditetapkan pemerintah. Salah satu protokol kesehatan yang ditetapkan pemerintah adalah diharuskan nya untuk memakai masker.

Kebijakan-kebijakan yang telah ditetapkan pemerintah dapat menanggulangi tingkat penyebaran virus di Indonesia jika kebijakan-kebijakan tersebut dapat terlaksana dengan baik. Oleh karena itu, dibutuhkan suatu sistem yang dapat mengawasi atau memantau proses pelaksanaan kebijakan tersebut di masyarakat. Salah satu nya adalah dengan membangun sebuah aplikasi pendeteksi wajah yang dapat mendeteksi seseorang ketika memakai masker atau tidak. Sistem pendeteksi wajah dapat dibangun menggunakan berbagai macam metode dan algoritma. Salah satu nya dengan menggunakan algoritma CNN (Convolutional Neural Network) atau biasa disebut dengan Jaringan Syaraf Tiruan (JST). Algoritma CNN adalah algoritma yang menggunakan sebuah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan saraf manusia. Jenis model jaringan syaraf tiruan ini memiliki beberapa lapisan yang disebut sebagai Multi-Layer Perceptron (MLP) yang dapat menghubungkan secara penuh antar neuronnya dan memiliki kemampuan klasifikasi yang powerful (Zufar & Setiyono, 2016). Maka dari itu, penulis akan mengembangkan sebuah sistem pendeteksi wajah manusia dengan menggunakan masker dan tanpa masker menggunakan algoritma CNN (Convolutional Neural Network) sebagai metodenya. Sistem yang sudah dikembangkan akan menghasilkan suatu model berformat TensorFlow Lite agar dapat diaplikasikan di *mobile*.

1.2 Perumusan Masalah

Berdasarkan latar belakang yang disebutkan sebelumnya, masalah utama yang akan dibahas dalam tugas akhir ini adalah sebagai berikut:

• Bagaimana mengimplementasikan algoritma CNN (*Convolutional Neural Network*) untuk membangun sistem pendeteksi wajah (*face recognition*).

- Bagaimana penerapan algoritma CNN (Convolutional Neural Network) dalam mengklasifikasikan wajah ketika menggunakan masker dan tidak menggunakan masker.
- Bagaimana model yang dihasilkan dapat digunakan dalam *mobile deployment* dan *cloud computing*.

1.3 Tujuan Penelitian

Berikut merupakan tujuan dari penulisan tugas akhir ini, yaitu:

- Mengimplementasikan cara kerja algoritma CNN (Convolutional Neural Network)
 dalam mendeteksi wajah saat menggunakan maupun tidak menggunakan masker.
- Mengimplementasikan cara kerja metode transfer learning dalam proses training di sistem pendeteksi wajah (face recognition).
- Mengimplementasikan cara untuk mengconvert model tensorflow ke tensorflow lite agar model yang dihasilkan dapat digunakan oleh mobile deployment dan cloud computing.

1.4 Batasan Masalah

Agar pengerjaan tugas akhir ini menjadi lebih terarah dan mendapatkan hasil yang lebih spesifik, maka sistem yang dirancang akan dibatasi dalam batasan masalah sebagai berikut:

- Dataset yang digunakan dalam pembuatan model *machine learning* ini adalah dataset *dummy* yang di akses melalui situs kaggle.
- Metode yang digunakan dalam pembuatan model *machine learning* ini adalah metode *transfer learning*.
- Sistem ini hanya dapat mendeteksi wajah bermasker dan tidak bermasker melalui foto Gambar wajah (tidak *real-time*).
- Hasil akhir dari sistem ini adalah sebuah model yang berformat tensorflow lite dan model .h5.

1.5 State of The Art

Jurnal	Kesimpulan	Persamaan	Perbedaan

Implementasi	Dalam penelitian ini,	•	Algoritma	•	Dalam
Metode	penulis mengembangkan		yang		penelitian ini
Convolutional	suatu sistem untuk		digunakan		penulis
Neural	mengklasifikasikan jenis-		dalam		menggunaka
Network	jenis bunga anggrek.		penelitian		n metode
(CNN) Untuk	Untuk		yaitu		waterfall
Klasifikasi	pengklasifikasiannya,		menggunaka		dalam
Jenis Bunga	penulis menggunakan		n algoritma		arsitektur
Anggrek	metode Convolutional		CNN		aplikasi nya.
	Neural Network dengan		(Convolution	•	Proses
	mencari nilai probabilitas		al Neural		pengklasifika
	kecocokan input Gambar		Network).		sian yang
	dengan data set. Dalam				dilakukan di
	simulasi yang dilakukan				aplikasi ini
	oleh penulis, probabilitas				yaitu
	yang diperoleh berhasil				menggunaka
	mendapatkan sebesar				n Gambar
	0.872.				yang telah
					diinputkan
					oleh user.
				•	Aplikasi
					yang
					dibangun
					berdasarkan
					web.
Implementasi	Dalam penelitian ini,	•	Algoritma	•	Proses
Convolutional	penulis mengembangkan		yang		klasifikasi
Neural	sebuah sistem		digunakan		yang
Network	pengklasifikasian		penulis		dilakukan di
Untuk	terhadap satu helai daun		untuk		sistem ini
Identifikasi	dengan menggunakan		mendeteksi		dengan

Jenis	algoritma CNN	sehelai daun		menggunaka
Tanaman	(Convolutional Neural	yaitu dengan		n Gambar
Melalui Daun	Network). Hasil dari	menggunaka		yang telah
	sistem pengklasifikasian	n algoritma		diinputkan
	ini adalah sebuah	CNN		oleh user.
	persentase probabilitas	(Convolution	•	Aplikasi
	atau akurasi dari	al Neural		yang
	pengujian proses deteksi	Network).		dibangun
	dan pengenalan jenis			berdasarkan
	daun. Besar probabilitas			web,.
	atau akurasi yang didapat			
	adalah sebesar 0.76 atau			
	76%.			
Convolutional	Penulis membangun	Algoritma		Pendeteksian
Neural	sebuah sistem yang dapat	_		wajah yang
Networks		yang		dilakukan
	mendeteksi wajah dengan	digunakan dalam		
untuk	menggunakan algoritma			hanya dapat mendeteksi
Pengenalan Waiah Sagara	CNN (Convolutional	penelitian ini		
Wajah Secara	Neural Network).	adalah		wajah secara
Real-Time	Konstruksi model	algoritma		real.
	menggunakan 7 layers	CNN	•	Model yang
	model konvolusi,	(Convolution		sudah
	diantaranya adalah <i>input</i>	al Neural		berhasil
	layer, convolutional layer	Network).		dibuat tidak
	CI, pooling layer P2,			di <i>compile</i> ke
	convolutional layer C3,			dalam
	pooling layer p4, hidden			TensorFlow
	layer H, dan output layer			Lite.
	F, dan berhasil		•	Metode
	mengklasifikasikan			klasifikasi
	Gambar wajah dengan			yang

	akurasi atau probabilitas		digunakan
	sebesar 0.87 atau 87%.		tidak
	Dalam proses		menggunaka
	pengklasifikasiannya,		n metode
	penulis menggunakan		binary
	ekstraksi Extended Local		classificatio.
	Binary Pattern untuk		• Data training
	mengatasi pengaruh		yang
	intensitas cahaya pada		dihasilkan
	Gambar, sehingga jika		tidak melalui
	Gambar terkena gangguan		metode
	intensitas cahaya maka		transfer
	akan menghasilkan		learning.
	ekstraksi pola fitur yang		
	hampir sama dengan		
	Gambar yang		
	mendapatkan		
	pencahayaan rendah dan		
	konfigurasi inisialisasi		
	parameter bobot dengan		
	menggunakan persebaran		
	berdistribusi normal		
	standar dapat		
	mempercepat konvergensi		
	dan kestabilan		
	dibandingkan melakukan		
	inisialisasi secara acak.		
Sistem	Penelitian yang dilakukan	• Tujuan	Metode atau
Deteksi	penulis berhasil	penelitian	algoritma
Wajah	mengimplementasikan	yang	yang
Dengan	algoritma Viola Jones ke	dilakukan	digunakan
Dongan	argorithma viola Johes Re	GHAKUKAH	Giguiakan

Metode Viola wajah dengan menggunakan bahasa pemrograman python. Pengujian yang dilakukan penulis adalah dengan menggunakan K-fold cross validation dan mendapatkan akurasi atau probabilitas sebesar 0.90 atau 90% dan 0.75 atau 75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classifier = 3, min_feature_width/height = 3, amin_feature_width/height = 8, dan	Modifikasi	dalam sistem pendeteksi	oleh penulis	dalam
pemrograman python. Pengujian yang dilakukan penulis adalah dengan menggunakan K-fold cross validation dan mendapatkan akurasi atau probabilitas sebesar 0.90 atau 90% dan 0.75 atau 75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classifier = 3, min_feature_width/height = 3, min_feature_width/height	Metode Viola	wajah dengan	adalah	penelitian ini
Pengujian yang dilakukan penulis adalah dengan menggunakan K-fold cross validation dan mendapatkan akurasi atau probabilitas sebesar 0.90 atau 90% dan 0.75 atau 75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classifier = 3, min_feature_width/height hadalah num_classifier = 3, min_feature_width/height	Jones	menggunakan bahasa	mendeteksi	menggunakan
penulis adalah dengan menggunakan K-fold cross validation dan mendapatkan akurasi atau probabilitas sebesar 0.90 atau 90% dan 0.75 atau 75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classifier = 3, min_feature_width/height		pemrograman python.	wajah.	metode atau
menggunakan K-fold cross validation dan mendapatkan akurasi atau probabilitas sebesar 0.90 atau 90% dan 0.75 atau 75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		Pengujian yang dilakukan		algoritma
cross validation dan mendapatkan akurasi atau probabilitas sebesar 0.90 atau 90% dan 0.75 atau 75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height = 3, min_feature_width/height		penulis adalah dengan		Viola Jones.
mendapatkan akurasi atau probabilitas sebesar 0.90 atau 90% dan 0.75 atau 75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classifier = 3, min_feature_width/height = 3, min_feature_width/height		menggunakan K-fold		 Pengujian
probabilitas sebesar 0.90 atau 90% dan 0.75 atau 75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		cross validation dan		yang
atau 90% dan 0.75 atau 75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		mendapatkan akurasi atau		dilakukan
75% untuk besar akurasi pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		probabilitas sebesar 0.90		penulis
pendeteksi bukan wajah. Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		atau 90% dan 0.75 atau		menggunakan
Dari hasil akurasi yang didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature_width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classifier = 3, min_feature_width/height		75% untuk besar akurasi		K-fold Cross
didapat, didapatkan bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classifier = 3, min_feature_width/height		pendeteksi bukan wajah.		Validation.
bahwa modifikasi nilai parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		Dari hasil akurasi yang		• Dalam
parameter terbaik untuk melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		didapat, didapatkan		penelitian in,
melakukan deteksi Gambar wajah adalah num_classifier = 5, min_feature width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		bahwa modifikasi nilai		penulis juga
Gambar wajah adalah num_classifier = 5, min_feature width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		parameter terbaik untuk		melakukan
num_classifier = 5, min_feature width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		melakukan deteksi		sistem
min_feature width/height = 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		Gambar wajah adalah		pendeteksi
= 10, dan max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		num_classifier = 5,		bukan wajah.
<pre>max_feature_width/height = 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height</pre>		min_feature width/height		
= 10, sedangkan nilai parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		= 10, dan		
parameter terbaik untuk melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		max_feature_width/height		
melakukan deteksi Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		= 10, sedangkan nilai		
Gambar bukan wajah adalah num_classffier = 3, min_feature_width/height		parameter terbaik untuk		
adalah num_classffier = 3, min_feature_width/height		melakukan deteksi		
3, min_feature_width/height		Gambar bukan wajah		
min_feature_width/height		adalah <i>num_classffier</i> =		
		3,		
=8, dan		min_feature_width/height		
		=8, dan		

	max_feature_width/height			
	= 10.			
Aplikasi	Penelitian yang dilakukan	• Tujuan	•	Metode atau
Pendeteksi	oleh penulis adalah	penelitian		algoritma
Wajah	membangun sebuah	yang		yang
Menggunakan	aplikasi pendeteksi wajah	dilakukan		digunakan
Fitur HAAR	dengan menggunakan	oleh penulis		yaitu dengan
	metode atau algoritma	adalah untuk		menggunakan
	Viola Jones dan fitur	membangun		algoritma
	HAAR. Tujuan dari	sebuah sistem		Viola Jones.
	aplikasi pendeteksi wajah	pendeteksi	•	Fitur yang
	yang dibangun oleh	wajah.		digunakan
	penulis adalah			untuk
	memaksimalkan proses			mendeteksi
	pada penggunaan kamera			wajah dengan
	pengawas, dengan hanya			menggunakan
	menyimpan data yang			fitur HAAR.
	penting saja sehingga		•	Bahasa
	mengurangi spesifikasi			pemrograman
	space untuk menyimpan			yang
	data yang dibutuhkan.			digunakan
	Dengan menggunakan			untuk
	metode atau algoritma			membangun
	Viola Jones dan fitur			aplikasi
	Haar, kecepatan proses			pendeteksi
	dan tingkat akurasi			wajah ini
	deteksi yang tinggi,			dengan
	namun harus ditebus			menggunakan
	dengan tingkat kesalahan			bahasa
	positif yang cukup tinggi			pemrograman
	pula.			C++.]

	• Library yang
	digunakan
	untuk
	menginput
	sebuah data
	dalam aplikasi
	ini yaitu
	OpenCV agar
	terhubung
	dengan
	webcam
	device.

1.6 Sistematika Penulisan

Sistematika penulisan disusun untuk memberikan gambaran secara umum mengenai permasalahan dan pemecahannya. Penyusunan ini diuraikan dalam beberapa pokok permasalahan yang terbagi dalam beberapa bab. Sistematika penulisan Tugas Akhir ini adalah sebagai berikut:

Bab 1 Pendahuluan

Bab ini memuat pendahuluan penelitian yang terdiri dari latar belakang, rumusan masalah, tujuan dan manfaat penelitian, ruang lingkup penelitian, *state of the art*, serta sistematika penulisan penelitian.

Bab 2 Landasan Teori

Bab ini memuat landasan teori penelitian yang terdiri dari teori dasar mengenai *Machine Learning*, algoritma CNN (*Convolution Neural Network*), *Transfer Learning*, TensorFlow *Library*, dan TensorFlow Lite.

Bab 3 Analisis dan Perancangan

Bab ini memuat tentang analisis dan perancangan mengenai aplikasi EVA (*Everyone's Vigor Auxiliary*) serta sistem pendeteksi wajah yang akan dibangun.

Bab 4 Implementasi dan Pengujian

Bab ini membahas mengenai implementasi algoritma CNN (*Convolutional Neural Network*) dan metode *transfer learning* dalam mendeteksi wajah dengan menggunakan dan tanpa menggunakan masker yang meliputi akurasi pendeteksian dan output deteksi.

Bab 5 Kesimpulan dan Saran

Bab ini memuat kesimpulan dan saran dari pembahasan analisis pendeteksi wajah dengan menggunakan algoritma CNN dan metode *transfer learning*.

Data Referensi

Lampiran