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gotivation can counteract the effects of mental fatigue. However, the underlying mechanism by which
motivation affects performance in mentally fatiguing tasks is obscure.

In this paper, we propose goal competition as a paradigm to understand the role of motivation and
built three models of mental fatigue studies to demonstrate the mechanism in a cognitive architecture
named PRIMs. Each of these studies explored the impact of reward and mental fatigue on performance.
Overall, performance decreased in nonreward conditions but remained stable in reward conditions.

The comparisons between our models and empirical data showed that our models were able to
capture human performance. We managed to model changes in performance levels by adjusting the
value of the main task goals, which controls the competition with distractions. In all the tasks modeled,
the best model fits were obtained by a linear decrease in goal activation, suggesting this is a general

m:’]\?tion pattern. We discuss possible mechanisms for activation decrease, and the potential of goal competition
to model motivation.

© 2021 The Authors. Published by Elsevier Inc. This is anopen access article under the CC BY-NC-ND

license ( http:|/creativecommons.org/licenses/by-nc-nd (4.0/).

E. lntrorluction 2013). ivation drives individuals to stay engaged with a par-

18
In this paper, we gsent a cognitive modeling approach to

help clarify the underlying mechanisms of how mental fatigue
affects task performance. While mental fatigue is a common
phenomenon, its mechanisms are not yet fully understood.

Mental¥atigue typically occurs when doing a highly de-
manding task for a long time (Boksem, Meijman, orist, 2006;
Herlambang, Cnossen, & Taatgen, 2021; Hockey, 2011; van der

Linden, Frese, & Meijman, 2003). In most cases, performing such
a task increases the subjective feeling of tiredness over time
(Krupp, Larocca, Muir Nash, & Steinberg, 1989; Miiller, & Apps,
2019), while performance levels typically decline (Craig, & Klein,
2019; Qi et al, 2019; Warm, Parasuraman, & Matthews, 2008;
Wessely, Hotopf, & Sharpe, 1998). For instance, a student's atten-
tion level may drop after reading a book for 60 min, or a driver
may lose focus after driving a car for many hours. However, not
all prolonged tasks cause mental fatigue. For example, a worker
can maintain his/her performance in the evening to get overtime
payments. @

Many factors determine the effects of mental fatigue, and one
of those is motivation (Kurzban, Duckworth, Kable, & Myers,
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ticular activity (Wigfield, Eccles, Schiefele, Roeser, & Davis-Kean,
2006), so that when motivated to do a particular task, individuals
will maintain their performance levefg) but when no longer moti-
vated, performance levels may drop (Boksem, & Tops, 2008; Earle,
Hockey, Earle, & Clough, 2015). It has beenpjggested that as
fatigue or task duration increases, people are less willing to stay
engaged with the task (i.e., less motivated to continue performing
the task), possibly because the perceived future benefits of the
current gfions decrease (Hockey, 2011, 2013), which in turn
impairs performance (Boksem & Tops, 2008; Kurzban et al,, 2013;
Miiller & Apps, 2019).

Direct experimental ence for the role of motivation in
mental f; e comes from different sources. For example, Her-
lambang, Taatgen, and Cnossen (2019) performedfg§study where
participants performed a working memory task for 2.5 h. Two
types of conditions were alternated: reward and nonreward, and
their réBllts showed that task performance levels remained stable
in the reward conditions bu lined in the nonreward condi-
tions over time. [n a study by Hopstaken, van der Linden, Bakker,
and Kompier (2015), participants performed a 2-h working mem-
ory experiment and were offered a shortening of the experiment
duration in case of good performance in the last block. After a
decline in performance over the course of the experiment, the
performance level in the last block returned to the initial level.
Similarly, a study in which participants were offered monetary
rewards in the last block showed the same pattern (Boksem et al.,
2006).

0022-2496/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ne-nd/4.0/).
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1.1. Fatigue and motivation

though fatigue and motivation are related (Herlambang
et al., 2019; Hockey, 2011; Kurzban et al, 2013), it is not clear
what the mechanism is by which motivation affects performance
while fatigued. Motivation is often described as the subjective
assessment of cost and benefits, where tasks (or actions within
tasks) that offer more benefits at lower costs will be prioritized
r others that offer less benefits and/or are more costly (Chong
et al, 2017; Kurzban et al,, 2013).

Benefits of tasks may come in the form of rew i.e., a form
of extrinsic motivation (e.g., monetary rewards; Bokse al.,
2006; Herlambang et al., 2019; Hopstaken et al., 2015; van der
Linden, 2011), or from the joy of performing the task itself, i.e., in-
trinsic motivation (Di Domenico, & Ryan, 2017; Herlambang et al.,
2021; Ryan, & Deci, 2000). The costs of maintaining performance
over time and stay engaged with the task is perceived as effort
(Hockey, 2011).

Hockey (2011, 2013) suggests that when performing a task,
there is a constant cost/benefit analysis of alternative actions,
and as a task progresses, the willingness to continue doing un-
rewarding activities may drop, especially in tasks that are not
enjoyed, also because the perceived probability of future success
may decrease over time. This may lead to a search for more
rewarding activities and even quitting the task altogether. In his
motivational control theory, Hoclkey (2011) claims that each com-
peting goal has an activation value and is controlled by an “effort
monitor”. He suggests that the active goal needs to be maintained
by investing more effort into that goal and suppressing other
goals. Otherwise, if the initial goal has lost its activation, another
goal will replace it and become the new active goal.

A study identifying the neural mechanism of mental fatigue
by Miiller and Apps (2019) in which they incorporated both
neurophysiological and neuroimaging research suggests that the
subjective value of performing a task, which rese s Hockey's
activation value, is influenced by the amount of a reward, the
expected effort needed to obtain the reward, and the feeling
of fatigue. They proposed a notion that the higher the reward,
the higher the subjective value of the task; however, when the
expected effort to obtain the reward becomes higher, which also
increases when the feeling of fatigue develops, the subjective
value of the task becomes lower. Moreover, the study suggests
that the p@Ress of evaluating the costs-benefits of a task mainly
occurs in the dorsal anterior cingulate cortex (dACC), anterior
insula (Al), and dorsolateral prefrontal cortex (DLPFC).

In an effort to clarify the underlying mechanisms of the ef-
fects of fatigue and motivation on task performance, we took a
modeling approach. We built cognitive models tdg@imulate the
results of three different mental fatigue studies; each of these
studies explored the impact of reward and mental fatigue on
performance. In our models, we incorporated Hockey's approach
and the notion of Miiller & Apps that as the feeling of fatigue in-
creases, the subjective value of a task gradually decreases. Hence,
individuals become less motivated to invest more effort into the
task. More specifically, we quantified task motivation as the level
of activation of the goal of the main task, which represents the
subjective value of the task—motivation is describe he result
of cost-benefits evaluation of performing the task (Chong et al.,
2017; Kurzban et al., 2013; Miiller & Apps, 2019). Therefore, as
the feeling of fatigue develops and decreases task motivation,
other tasks may have a higher goal activation than the current
task, so that over time, other tasks may be given preference.

Before describing our modeling attempts, we will first give an
overview of the PRIMs architecture in which our modeling was
done and describe the further assumptions behind our modeling
mental fatigue as a competition between goals.

Iaumai of Mathematical Psychology 102 {2021) 102540

1.2. PRIMs cognitive architecture

PRIMs is a cognitive architecture (Taatgen, 2013) based on
ACT-R (Anderson et al., 2004) and works similarly. It consists of
several modules: a visual module, declarative memory, working
memory, manual modules, and, most importantly for our pur-
poses, the task control module, which holds the current goals.
The modules communicate with each other in a workspace to
which information from the modules is transferred by so-called
operators (see Fig. 1). Each of the modules has a section within
the workspace called a buffer. A module can place information in
a buffer, for example, the visual module can place the currently
attended visual stimulus in the buffer, or an operator can post
an action in a buffer, for example, a partial pattern that the
declarative memory module has to complete, or an action that
the motor system has to carry out.

An operator in PR consists of an if-else statement, that
is, the condition (the left-hand side) and the action (the right-
hand side), which is similar to a production in ACT-R. In this way,
operators determine how information in the workspace is used
by copying information from one module to the next. Different
from ACT-R, operators in PRIMs 3 an activation value. This
activation value is influenced by information that is already in
the buffers (i.e., in the workspace in Fig. 1). The buffer contents
spread activation to operators, and the operator with the highest
activation is selected, determining the next action. Typically, task
goals, which are represented in the task control buffer, have the
strongest impact on this selection process, but a very salient
perceptual input (or other buffer contents that are strongly as-
sociated with certain operators) can trigger operators that are
unrelated to the current goal.

1.2.1. Activation values in PRIMs

As with ACT-R, PRIMs has a declarative memory that repre-
sents facts to support a task. However, the declarative memory
in PRIMs also represents procedural knowledge in the form of
operators, which means that both declarative and procedural
knowledge are handled in the same way.

ach item in the declarative memory, namely a chunk, has an
activation value, which is a summation of base-level activation
and spreading activation. Base-level activation represents the
history of a chunk, whereas spreading activation represents the
context of the current task. Together, these two activations con-
trol how chunks are selected and determine the time it takes to
process (i.e., to retrieve) the chunks. The chunk with the highest
activation value will be selected. When the activation value is
below a retrieval threshold, the chunk cannot be retrieved.

The formula to calculate the activation value of a particular
chunk is

buffers slors goals

Ai=Bit+ Y Y SiWi+ Y SuAi + noise (1)
ko k

%ere Ai denotes tl‘@ctivation value of a chunk i, B; is its
base-level activation, 5; represents the strength association from
source j to chunk i, and W;, represents the amount of activation
from each buffer. There are two components of spreading activa-
tion in the formula. The double summation (i.e., the first spread-
ing activation) sums the activation from k number of buffers in
the workspace and j number of chunks in the buffer k.

The second summation in Eq. (1) is novel. 5; represents the
spreading activation from k number of active goals in the model.
Normally, the amount of spreading from buffers only depends on
the strength of the association, but in this paper, we assume that
activation of task goals (A;) also plays a role in the amount of
activation spreading to the chunks.
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@L The PRIMs model that comprises five modules, Reprinted from “The Nature and Transfer of Cognitive Skills”, by Taatgen (2013), Psychological Review, 120, p.
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Among those chunks' values that are above the retrieval
threshold, the probability of retrieving chunk i over others is

plift
e

where t is equal to +/2s in which the coefficient s represents the
variance of the noise component in Eq. (1).

P(A;) = (2)

1.2.2. Modeling fatigue and motivation decline in PRIMs

The assumption in this paper is that the decrease in task
performance in mental fatigue is the result of a reduction in
task motivation. In our model, this is reflected in a reduction
in activation of the task goal over time. We also assume that
at any moment in time, there may be other activities that seem
more beneficial, so that a decrease in the task goal activation also
increases the probability that an operator for a different task is
selected.

As an example of the kindBf competition, let us look at the
situation in which a task goal‘%rﬁ)rm a working memory task
has to compete with watching T tat video playing on the same
computer screen. Suppose the task goal has an activation of 1.0
(Aga = 1.0) and is associated with an operator X that carries
out the next step with an association strength of 1.5 (Sgax =
1.5). Assuming a base-level activation (B;) of zero, and no further
associations, this means that operator X, according to Eq. (1),
has an activation of 1.5. Now let us assume that the video is in
the visual field (e.g., W,i,n = 1.0), and spreads activation to
an operator Y that wants to watch the video (S,igeoy = 1.0).
According to (1), the activation of operator Y is 1.0. Using Eq.
(2), we can calculate the probability of watching the video, for
example, if we assume a noise parameter of t 0.1, we can
calculate that P(Y) = 0.007, which means that the probability is
very small. However, if Ag starts to decrease, which we associate
with a drop in motivation, for example A, = 0.8, the probability
of watching the video increases, in this example to 0.135, so
that over time the video starts to win the competition with the
working memory task and the person will start watching the
video rather than doing the main task.

As time progresses, individuals may experience an increase in
the feeling of fatigue that reduces the subjective value of the main
task, i.e., task motivation (Miiller & Apps, 2019) or goal activation
(Agoar) in our models. Consequently, goal activation is discounted
by the feeling of fatigue. The perceived reward from doing the
task (extrinsically or intrinsically) maintains the goal activation
from declining. Therefore, the relationship between the perceived
reward (P), the feeling of fatigue (F), and goal activation (Ag,) at
any given time (t) is

(3)

where the maximum value of goal activation is 1, and the value
of Pry — Firy cannot be lower than zero. The goal activation value
of one means that the model mainly focuses its attention on the
main goal.

Goal activation at time t is determined by the minimum value
between the value of one and the subtraction result at time ¢
between P and F. Essentially, goal activation is the net value
between the perceived reward and the perceived fatigue.

The value P is influenced by previous perceived rewards. For
example, when the previous incentive at t — 1 is perceived as
more valuable than the recent one at t, then the value P, is smaller
than P;_;. In contrast, the value of P, is higher if the reward at t
is perceived as more valuable than the previous one att — 1.

The value F increases as time progresses with no rest breaks.
However, when an individual takes an opportunity to take a total
break, the F value may decrease, slowing down the decrease of
the Agour (see Helton, & Russell, 2017).

Agparey = min(1v (Pgy — Fy)),

1.2.3. Further considerations

While we use the activation of the task goals to simulate the
level of motivation, it is useful to realize that goals and motiva-
tion, even though they are closely related, are not the same. Goals
can be identified as the onset of all behaviors (Powers, 1973)
and represent the expected behavior and the desired end-state
(Hockey, 2013), whereas motivation is what energizes individuals
to pursue a particular goal (Wigfield et al, 2006). A goal gives
direction, while motivation drives human behaviors towards that
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goal. For example, the goal is to obtain a certain position at work,
while the motivation is to earn a higher salary for that position.
Another example of a goal is a university student who wants to
be successful in life financially while being motivated because of
poverty.

Although the term goal can be broad, e.g., goals in life, financial
goals, and any other goals, in this paper, we narrow down the
context of goals to be task specific. The purpose of a goal is to
serve as an active mental representation that maintains focus on
the task, activating knowledge that can help perform the task, and
guarding it from distraction.

It is evident that motivation affects the ability to stay focused
on a task and not be distracted by internal or external distractions
(Herlambang et al, 2019). In the case of external distractions,
task-unrelated stimuli may shift attention away from the main
task, while internal distractions may manifest itself in the form
of mind-wandering (Huijser, van Vugt, & Taatgen, 2018).

For our modeling efforts, however, such distractions needed
additional assumptions. In PRIMs, operators are defined in the
context of a task goal, but clearly, not all behaviors related to
distraction can be directly linked to a goal: Watching a cat video
playing on the screen is not necessarily a goal, but more an ex-
ternal distraction (stimulus) that attracts attention. It is similarly
difficult to imagine mind wandering (e.g., thinking about what
to have for lunch) as a task goal. However, for the purpose of
the modeling, we did decide to model such distractions as if
they had a task goal but not as an active goal, so that fatigue,
or rather, the decline in motivation over time, represents an
increasing competition between (future) goals: the active goal
of doing the main task and of attending distracting external or
internal information, where the distracting goal can replace the
active one (see Hockey, 2011).

In this paper, we test the notion of goal competition by build-
ing cognitive models to reproduce the results of three mental
fatigue studies that directly manipulated the level of motivation:
a vowel task (Herlamb@f§ et al., 2019), a monitoring task (Bok
sem et al, 2006), and an N-back task (Hopstaken et al,, 2015),
with each experiment having its own experimental conditions
and characteristics. Therefore, if each of our models is able to
simulate the behavioral data in each of these studies, we gain
confidence that the notion of g competition may reveal the
underlying mechanism of how motivation can counteract the
effects of mental fatigue.

2. Building the cognitive models

In a PRIMs model, several components are specified: the name
of a task, the operators to do the task, the facts in declarative
memory needed in the task, and a script that runs the model (sim-
ulates both the environment and the task). When defining a task,
the modeler can initialize a number of parameters affecting the
time certain operations take: a threshold that determines when
information is forgotten, the amount of noise in selecting items
from memory, and parameters that specify how fast chunks in
memory decay. Some parameters have default values, but others
have to be fitted in each particular task model. In our modeling
efforts, we took care to minimize the amount of parameter fitting.

To build a model, first, we determined which task-specific
operators were required to do the task, and then fitted the model
parameters to match nonfatigued behavior. Second, for each ex-
perimental block, we estimated the goal activation value for the
main task to match the performance level of the model using
parameters in Eq. (3).

In all models built, there was only one goal active at a time
(Hockey, 2013): the goal for the main task. Distractions, both
external and internal, were not active goals in our models and
were designed to compete with the main goal over time.

Journal of Mathematical Psychology 102 {2021) 102540
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To verify our models,! we compared the results of our models
with empirical data in each experiment. A model fits empirical
data if it follows the data, meaning that the model is able to sim-
ulate the behavior of human participants. To quantify how well
our models fit empirical data, we performed Pearson’s correlation
analysis and calculated the root mean square error (RMSE) in
each measure (Gunzelmann, Moore, Gluck, Van Dongen, & Dinges,

2011) in R (version 4.0.2).

2.1. Vowel task

The vow sk was adapted from the mental fatigue study of
Herlambang et al. (2019). In this task, participants were asked to
count, memorize, and calculate a number of vowels continuously
for 2.5 h. The task consisted of 14 blocks alternating between
nonreward conditions (odd blocks) and reward conditions (even
blocks). In the reward conditions, participants received monetary
rev@irds for good performance.

sequence of distracting videos was displayed continuously in
the top right of the screen as a distractor for participants. In addi-
tion, participants’ focus of attention (eye movements) and heart
rate variability were measured continuously. The mid-frequency
band of heart rate variability was calculated to estimate partic-
ipants’ mental effort during the experiment in each block (Aas
man, Mulder, & Mulder, 1987).

Their results showed that although participants reported feel-
ing more fatigued oveime, their performance and attention
levels remained stable i the reward conditions but not in the
nonreward conditions: Participants were less distracted and
show@]J better performance levels in reward blocks by investing
more mental effort in these blocks.

Our model consisted of two main groups of operators: task-
specific for performing the main task and attention-shifting for
visual distractions. Inside an operator, there are some conditions
and action statements known as production rules.

We modeled several measures from the study: respon e
(RT), accuracy, visual distraction frequency (VDF), and the power
in the mid-frequency (MF) band of heart rate variability (HRV). To
see how well our models fit the experimental data, we performed
Pearson's correlation analysis in each of these measures in R
(version 4.0.2).

2.1.1. Modeling distraction

In the study, participants were more susceptible to distrac-
tions over time in the nonreward conditions. We modeled distrac-
tions by creating three operators. The first and second operators
took the action of shifting attention to the distracting video. The
third operator returned the attention of the model back to the
main task.

More specifically, the first operator compared two particular
slots in the visual field: the one slot representing the main task,
and one slot representing the video distraction. If the main task
slot was not empty, and the distraction slot filled, the operator
would trigger a shift in attention to the video distraction, mirror-
ing a situation in which the main task required visual perception
at that moment. The second operator would trigger a shift of
attention to the video on a retrieval failure, mirroring a situation
in which the main task encountered a problem. The third operator
would return its attention to the main task if the model shifted
its attention to the video distraction. Note that these operators
always had to compete with task-specific operators; therefore,
they were never guaranteed to be used, even if their conditions
were satisfied.

1 The code of each model can be found in the supplementary materials.
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We tuned the spreading activation of the visual input to the
first distraction operator to be .8 in all blocks. The maximum
value of the activation of the main task goal was 1.0, which

creased over time in nonreward conditions due to participants’
increase in the feeling of fatigue over time. Therefore, the model
was prone to a higher number of distractions in the nonreward
conditions when the activation values of being distracted were
higher than the activation values of doing the main task, and the
number of distractions increased over time.

2.1.2. Modeling mid-frequency power of heart rate variability

The mid-frequency (MF) power of heart rate variability (HRV)
reflects cognitive effort (Aasman et al,, 1987). A higher value in
the MF power means that participants invested less cognitive
effort and vice versa. In the model, there is no direct analog of
mental effort. Therefore, we created a mapping between the MF
power in the task by taking the total number of production rules
run by the model as a measure of mental effort.

In the model, the number of task-specific operators exceeds
the number of attention-shifting operators, and so did the num-
ber of production rules, meaning that performing the task re-
quires more operations and was more demanding than being
distracted. During simulation, the task-specific operators were
used more frequently in the reward conditions; therefore, the to-
tal number of production rules operated in the reward conditions
was higher than in the nonreward conditions.

To create a mapping, we calculated the total number of pro-
duction rules (both task-specific and attention-shifting operators)
operated in each block and named it the operator firing frequency
(OFE). In the model, a higher number of the OFF represents a
lower value of MF power, i.e., higher effort in participants. Since
the MF power in the study was normalized, we also normalized
the OFF as a division between the frequency of that block with
the total frequency of all blocks.

2.1.3. Running the model

To run the model, we used a separate script in each line in
PRIMs. First, we ran the model in the practice session so that the
model could learn how to do the task. We then ran the model
once for all blocks, where the odd blocks were the nonreward
inditions, and even blocks were the reward conditions. Overall,
we ran the model 100 times to simulate a total of 100 participants
in the experiment.

2.14. Results

2.1.4.1 Response time The model shows response times with a
pattern that is similar to the empirical data (see Fig. 2). In the first
four blocks, the model learns the task and is not yet affected by
a decrease in motivation in the nonreward conditions (although
participants already are). Later, it begins tdBfliffer in the two
conditions with reaction times being faster in reward blocks than
in nonreward blocks. In the model, the slower response times are
due to an increasing in distraction frequency.

2.1.4.2 Accuracy For accuracy, the model mirrors the experimen-
tal data really well (see Fig. 3). In the first three blocks, the
model learns how to do the task properly, just like the human
participants. ting from block four, the model maintains its
performance in the reward blocks, but decreases linearly in the
nonreward blocks. In the model, performance decreases because
rehearsal operators increasingly lose the competition from the
distraction operators.

2.1.4.3 Visual distraction frequency In the model, the visual dis-
traction frequency (VDF) was the number of eye movements to
the video distractor per block. The model mirrors the VDF from
the experiment (see Fig. 4). In reward blocks, the model maintains
its focus doing the main task, whereas in nonreward blocks it was
increasingly distracted by the video.

Journal of Mathematical Psychology 102 {2021) 102540
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Fig. 2. Comparison of response times between the experiment and the model.
Response times of the study are indicat a dotted line, whereas those of the
model are indicated by a solid line. The x-axis shows blocks, where odd blocks
are the nonreward conditions. The y-axis shows the unit in seconds.
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Fig. 3. Comparison of accuracy between the experiment and the model Accu-
racy of the study is indicated by @otted line, whereas accuracy of the model is
indicated by a straight line. The is shows blocks, where odd blocks are the
nonreward conditions. The y-axis shows the proportion of correct responses.

2.1.4.4 Mid-frequency power The operator firing frequency (OFF)
reflects how many times operators in the model perform (i.e., fire)
the main task, which was meant to simulate mental effort to
perform a particular task. Higher values of MF power indicate
lower effort, whereas lower values indicate the opposite. For
the OFF, higher values indicate more operations, whereas lower
values are the other way around.

The OFF mirrors the MF power (see Fig. 5). Starting from block
four, the firing frequency remains stable in the reward blocks,
indicating that the model kept constantly firing in these blocks.
On the other hand, in the nonreward blocks, firing becomes less
frequent, indicating that all required operators to run the main
task in the model were used less frequently, and the pace of
the model to run the task slowed down, which is similar to an
increase in the MF power indicating less effort.
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Visual Distraction Frequency

800

1 2 3 4 5 6 7 8§ 9 1011 12 13 14
Block

..... < Data  —O0— Model

Fig. 4. Comparison of visual distraction frequency (VDF) between the experi-
ment and the model. The VDF of the study is indicatééby a dotted line, whereas
the VDF of the model is indicated by a solid line. The x-axis shows blocks, where
odd blocks are the nonreward conditions. The y-axis shows the eye movements
towards the distracting video.

Table 1

The results of the correlation analysis of the vowel task between the

experimental data and the model

Measure r RMSE p 95% confidence interval
Lower Upper
limit limit

Response time 0.534 0.186 =.05 0.005 0.829

Accuracy 0.896 0052 <001  0.697 0.967

Visual distraction 0.958 97356 <.001 0971 0.978

frequency

Mid-frequency power —0.861 0218 =.001 —0.955 —0.611

21 orrelation analysis

able 1 shows the results of the correlation analysis between
the experimental data and the model. All measures show signif-
icant results, suggesting that the comparison between the data
and the model in each measure shows a good fit. The correlation
score between the mid-frequency power of data and the firing
frequency of the model shows a negative correlation, suggesting
that the firing frequency reflects the mid-frequency power in a
different direction.

2.1.6 Model performancg the vowel task

Performance levels decreased in nonreward blocks but re-
mained stable in reward blocks. The decrease in performance was
caused by the competition between task-specific and attention-
shifting operators that decelerated the overall process, mainly in
the nonreward blocks. Since the model became slow and had a
limited time to respond, the model did not manage to perform the
task in time, thus making more incorrect responses in nonreward
blocks. Furthermore, every time the model committed a retrieval
error due to its slow performance, it would decide to shift its
attention to the distracting video. When it occurred within a
trial, the model was guaranteed to fail in that trial because it
required full attention to perform the task successfully. As a
result, the model watched the distracting video more often in
the nonreward blocks. It was possible that the model wrongly
retrieved a chunk from the declarative memory due to noise,
which occurred relatively rare.

When the goal activation of the main task decreased over
time, our model would produce more errors performing the main
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Fig. 5. Comparison between the MF power of the study and the operator firing
frequency (OFF) of the model. The MF power of the study is in ed by a dotted
line, whereas the OFF of the model is indicated by a solid line. Both x-axes show
blocks, where odd blocks are the nonreward conditions. Both y-axes show the
normalized unit of each measure.

task. The decrease of goal activation was due to an increase
in the participants' feeling of fatigue, which was reported by
Herlambang and colleagues in their study. Howeve the study,
participants’ performance levels dropped mainly in nonreward
blocks but not in reward blocks. As with the empirical data, the
performance levels of our model did not drop in reward blocks.
This was due to participants perception of reward in nonreward
blocks that was lower than in reward blocks, which caused the
goal activation to drop faster in nonreward blocks (see Eq. (3)).
In reward blocks, the goal activation increased because of the

reward stimulus, which improved performance levels in these
blocks.

2.2 Monitoring task

Boksem et al. (2006) performed a mental fatigue experiment
that offered monetary rewards to participants for good perfor-
mance in the last block. In this task, they asked participants to
memorize and monitor two pairs of stimuli for 2 h and 20 min.
These pairs were the same throughout the experiment. The first
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pair was a left arrow with the letter H, and the second was a
right arrow with the letter S. Participants were asked to press a
button with a left-hand finger if the letter appeared was an H,
and a right-hand finger if it was an S ile the letter was being
presented, there was a fixation point in the center of the scre
The appearance and the location of the letters (in the left side or
right side of the screen) were randomized.

A trial started with an arrow cue appearing in the screen for
150 ms with a probability of .8. [f a right arrow appeared, then the
letter S would appear in the screen, and if the left arrow appeared,
the letter H would appear. Next, the main screen would remain
blank for 1s.

The experiment was divided into seven blocks: six blocks of
no reward and one last block with reward. Each block lasted
for 20 min. In this experiment, there was no explicit distractor
(i.e., like the video in the vowel task). Their results showed that
performance levels dropped from the first to the sixth block but
increased again in the last block.

To model goal competition, we decreased the goal activation
value of the main task from the first to the sixth block and
returned the value back to the initial value in the last block. We
assumed that participants were distracted by their own thoughts
in the form of mind-wandering. This means that operators for
the main task competed with operators for the mind-wandering
action during simulation. As a result, when the goal activation
value of the main task becomes lower over time, the probability
of any operators for the main task to be operated also becomes
lower, resulting in lower performance levels in the course of the
first six blocks.

2.2.1 Modeling mind-wandering

To model mind-wandering, we used a set of operators that
are similar to visual distraction but were now targeted at mem-
ory. These operators are identical to a set of operators used to
model mind wandering by Huijser et al. (2018). The first opera-
tor checked whether the declarative memory buffer was empty,
meaning that nothing was retrieved from declarative memory. If
it was empty, the operator would retrieve an episodic chunk from
the declarative memory that was not related to the task.

After successfully carrying out the first operator, it could trig-
ger a second operator that would elaborate on the retrieved
episode by performing further retrievals. A condition for that
operator is that the working memory buffer is empty. Therefore,
mind wandering is very short if working memory is already in
use by the main task, but relatively long if working memory is
not occupied. The eight episodic chunks that were used by this
operator were: wandering, breakfast, cycling lecture, coffee, lunch,
exam, and nothing, representing a few activities in real life. The
model would quit mind-wandering if another operator from the
main task with a higher activation value won the competition.

2.2.2 Running the model

We ran the model 100 times to simulate an experiment with
100 participants. We first ran the model once to train the model,
and then ran the task seven times, simulating six blocks of non-
reward and one block of reward condition.

2.2.3 Results

2.2.3.1 Response time The model mirrors the experimental data
(see Fig. 6). From the first to the sixth block, RTs slightly become
slower but then become faster in the last block.

2.2.3.2 Error rate Fig. 7 shows that the error rates in the model
mirror the data. From the first to the sixth block, error rates
increase but then drop in the last block.
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Fig. 6. Comparison of response times between the experiment and the model.
Response times of the study are indicated by a dotted line, whereas those of
the model are indicated by a solid line. The x-axis shows blocks, where the last
block is the reward condition. The y-axis shows the unit in seconds.
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Fig. 7. Comparison of error rates between the experiment and the model. Error
rates of the study are indicated dotted line, whereas those of the model
are indicated by a solid lifell The X-axis shows blocks, where the last block is
the reward condition. The y-axis shows the proportion of the error rate.

%ez

The results of the correlation analysis of the monitoring task between the

experimental data and the model.
Measure r RMSE P 95% confidence interval
Lower limit Upper limit
Response time  0.975 0.021 <.001 0.836 0.996
Error 0664 0012 103 —0.177 0.944

2.2.4 Correlation analysis

Table 2 shows that the correlation of the response time mea-
sure between the experimental data and the model was signifi-
cant. Even though the error measure of the model and the data
show a positive correlation, the correlation was not significant.

2.2.5 Model performance in the monitoring task
The model produced mo rrors when goal activation de-
creased. This occurred due to an increase in the feeling of fatigue
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over time, especially in the first six blocks—although Boksem and
colleagues did not report the subjective fatigue in their study,
we assumed i increase linearly over time. As a result, perfor-
mance levels decreased from the first to the sixth block but in-
creased in the last block due to the reward stimulus in this block;
the perceived reward increased the goal activation of the main
task.

As goal activation decreases while the feeling of fatigue in-
creases, the decrease in performance was mainly caused by the
competition between task-specific and mind-wandering opera-
tors, causing interference with the retrieval process. That is, the
model had difficulties retrieving chunks from the declarative
memory, resulting in incorrect responses in the first six blocks
over time. On the other hand, the model had a high chance
of retrieving chunks successfully in the last block, which was
influenced by the reward stimulus, resulting in a higher goal
activation value and therefore improved performance.

23 mack task

Hopstaken et al. (2015) performed a mental fatigue study
in which participants performed the 2-back task for two hours.
They divided the experiment into seven blocks consisting of six
blocks of nonreward and one last block with reward: They offered
participants a shorter dion depending on their performance
in the last block; while 1n reality, the actual duration of the last
block was the same as the previous six blocks.

As in the monitoring task, we assumed that the decline in
performance that occurred in the first six blocks were due to
mind wandering increasing over time. In the model, we let goal
activation of doing the task decrease over time.

In this task, we modeled the two measures the authors re-
ported: hit rate and false alarm. A hit is a condition where there
is a target, and participants press a button; whereas a miss is
ﬁn there is a target, and participants do not press the button.

it rate is the ratio between the number of hits with the
number of hits plus the number of misses. A false alarm is a
condition where there is no target, and participants press a button
nonetheless; whereas a correct rejection is ﬁn there is no
target, and participants do not press a button. A false alarm rate
is the ratio between the number of false alarms with the number
of false alarms plus correct rejections.

2.3.1 Modeling mind-wandering

We used the same mechanism to model mind-wandering as
in the monitoring task. In addition, we used the same chunks in
the declarative memory for mind-wandering.

2.3.2 Running the model

We ran the model 100 times to simulate 100 participants in
the real experiment. We started with one time of the practice ses-
sion in each simulation for the model to learn the task. Afterward,
we ran the task six times for the nonreward blocks, and once for
the reward block.

2.3.3 Results

2.3.3.1 Hit rate The model moderately mirrors the experimental
data (see Fig. 8). In the second block, the hit rates slightly in-
crease, but drop in the third and the fourth block. In the reward
block, the hit rate reaches its peak level.

2.3.3.2 False alarm The model mirrors the experimental data (see
Fig. 9). In the first six blocks, false alarms increase moderately, but
decrease in the last block (i.e., the reward condition).
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Fig. 8. Comparison of hit rates between the experiment and the model Hit
rates of the study are indicated dotted line, whereas those of the model
are indicated by a solid life The X-axis shows blocks, where the last block is
the reward condition. The y-axis shows the proportion of the hit rate.
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Fig. 9. Comparison of false alarms between the experiment and the model. False
alarms of the study are indicated dotted line, whereas those of the model
are indicated by a solid lif] The X-axis shows blocks, where the last block is
the reward condition. The y-axis shows the proportion of the false alarm.

Table 3
The results of the correlation analysis of the N-back task between the
experimental data and the model.

Measure r RMSE P 95% confidence interval
Lower limit Upper limit

Hit rate 0257 0071 577 —0.615 0.846

False alarm 0831 0009 <.05 0.208 0.974

2.3.4 Correlation analysis

Table 3 shows that the correlation of the false-alarm measure
between the empirical data and the model was signifif@nt. Al-
though the visual comparison of the hit-rate measure between
the empirical data and the model seems to be a good fit, the
correlation of the hit-rate measure was not significant.

31
2.3.5 Model %fﬂmmnce in the N-back task 45
As with the monitoring task, the decrease in performance in
the N-back task from the first to the sixth block was affected by
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Fig. 10. The adjustments of goal activation values of nonreward blocks in all
tasks. Each adjustment is represented by a different line respectively. The x-axis
shows the cumulative duration of the nonreward block of each task, and the
y-axis shows activation values.

a decrease in goal activation. The decrease of goal activation was
influenced by an increase in the feeling of fatigue, which was
reported by Hosptaken and colleagues in their study.

As goal activation decreases over time in the first six blocks,
the task-specific operators started losing competition with the
mind-wandering operators, causing interference with rehearsal.
Since the model rehearsed less information from working mem-
ory over time, the model produced incorrect responses in these
blocks. In contrast, the model managed to rehearse the necessary
information to perform the task successfully in the last block,
which was influenced by the reward stimulus. Since the goal
activation increased in the last block, it helped improve the
performance of the model.

2.4 Goal activation values adjustment

Fig. 10 shows goal activation values of nonreward blocks in all
tasks. The vowel task had seven nonreward blocks, whereas the
monitoring and N-back tasks had six.

In Eq. (3), the goal activation of the main task (Agy) is de-
termined by the perceived reward from doing the task (P) and
the perceived feeling of fatigue (F). Since participants did not
receive any reward in nonreward blocks, the values of Agg, in
these blocks were smaller than in reward blocks. However, the
decrease of the Ag,, did not occur similarly in all tasks.

The perceived reward at any given time is influenced by the
previous perceived reward. Therefore, the slope of the Ag, in
the vowel task was not as steep as the remaining two tasks
because the blocks in the vowel task were alternated: nonreward
conditions in odd blocks and reward conditions in even blocks.
On the other hand, the slopes of the A, in the monitoring
and the N-back tasks were steep because the perceived reward
from doing the tasks degraded over time; as time progresses,
performing the tasks became less interesting. Furthermore, the
perceived fatigue increased over time, which reduced the Agy
much further.

We were able to fit the data from all experiments with a
linear decline in goal activation values. For all experiments, goal
activation values of reward blocks were kept constant (i.e., an
activation value of one).
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3 Discussion

We hypothesize that goal competition is one of the key factors
to understand the underlying mechanism of motivation in mental
fatigue. A key aspect of this hypothesis is that the decrease in
performance is not due to a decrease in the capacity of the
cognitive system (e.g., lower working memory capacity, slower
motor system, less reliable long-term memory) but by a decrease
in the ratio of cognitive “cycles” spent on the task as opposed to
distractions. We have modeled this by a decrease in the activation
of the goal, which represents the level of motivation, which
indirectly affects performance (Hockey, 2011).

To test our hypothesis, we built three models of mental fa-
tigue experiments: the vow sk (Herlambang et al., 2019),
the monitoring task (Boksem et al., 2006), and the N-back task
(Hopstaken et al.,, 2015). All tasks consisted of two types of condi-
tions: ?nreward and reward. In these tasks, human performance
levels decreased in the nonreward conditions but increased or
remained stable in the reward conditions. All models were built
in PRIMs (Taatgen, 2013), where we manipulated the activation
values of the task goal to simulate goal competition, resulting in
performance level changes.

Comparing our models with the empirical data showed that
our models were able to capture human performance: The de-
crease in goal activation value over time resulted in a decrease
in performance levels. In the same fashion, an increase in goal
activation value in reward conditions caused performance levels
to increase.

With regards to modeling, a modeler can tune some param-
eters to obtain a good fit. However, overdoing such parameter
tuning may lead to overfitting, which makes the models difficult
to generalize and does not represent the empirical data. In this
study, therefore, we avoid overdoing the parameter tuning. A
number of key findings will be discussed below.

3.1 Goal activation and performance

To lower performance in the nonreward conditions in all tasks,
we decreased task goal activation values over time. The goal
activation values in our models represent the subjective value of
performing the tasks, with a high subjective value corresponds
to a high level of motivation. The reduction of goal activation
was due to an increase in the feeling of fatigue (see Miiller &
Apps, 2019) and a continuous decrease in the perceived reward
from doing the tasks. In reward conditions, we increased goal ac-
tivation values because of the reward stimulus in these blocks. A
higher goal activation value of a task means that the information
of that task is more available; hence, the task has more priority
to be executed, which will result in better task performance
(see Kurzban et al,, 2013), for example, in faster response times.
However, reducing goal activation values solely was not adequate
to lower performance levels. The models required another com-
peting goal to implement goal competition. As a result, we were
able to fit our models with empirical data.

What our modeling efforts suggest is that over time, while
the act on value of the main active goal is decreasing, which
is due to an increase in the feeling of fatigue and a decrease
in the perceived reward (see Eq. (3)), another future goal of an
activity/stimulus, for example, a distraction, may start winning
the competition with the main task, when the activation value
of the distraction exceeds that of the main goal (i.e., it strongly
attracts the individual), in which case the individual may start
paying attention to the distraction. The distraction can become
the new active goal, and the individual may forget the main
goal, or choose to pay attention to both, but this will sacrifice
performance.
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In the end, when the individual is exhausted, weary, and does
not perceive any future benefits from performing the task or from
any competing activities, the individual can stop doing the task
cofletely; the goal activation of the main task goes near zero.
In this situation, the feeling of fatigue serves as a signal, (i.e., an
adaptive function) for the individual to reappraise the calculation
of future costs and benefits, i.e., the subjective value of the task,
looking for a more sensible activity with short-term benefits, such
as resting (see Hockey, 2013).

3.2 Operator firing and effort

3

Our models correspond to the motivational control theory
of fatigue proposed by Hockey (2013). In the theory, there is a
module called effort monitor that gives a signal to allocate effort
that later improves/maintains performance. Afterward, the signal
will be forwarded to a module named goal regulation that will
decide whether to maintain a particular task or to choose another
activity. As an empirical support, the study of Miiller and Apps
(2019) suggested that the reappraisal of the costs and benefits
?a task that later helps individuals allocate effort occurs in the

orsal anterior cingulate cortex (dACC), anterior insula (AI), and
dorsolateral prefrontal cortex (DLPEC).

In our models, when a goal is chosen, the operators of that goal
will fire. More specifically, the more active a goal is, the higher
the number of operator firings associated with that goal will be.
This number is similar to effort: Individuals also have to invest
more effort to maintain performance.

In the vowel task, we demonstrated that the number of firings
(i.e., the operator firing frequency [OF orresponds to the MF
power of HRV, which has been used as an indicator of effort
(Aasman et al, 1987). A lower value of MF power reflects higher
effort, which in our model was associated with a higher number
of firings. Moreover, a higher value of MF power was followed
by a lower number of operator firings. Therefore, with regards to
modeling, the number of firings has the potential to be used as
an indicator of mental effort to do a particular task.

3.3 Goal competition, motivation, and resources

By using goal competition as a mechanism, we were able
to simulate human behaviors in three different mental fatigue
studies. Our models primarily support the motivation account of
mental fatigue, that performance can be maintai@ over time
when motivated but decreases when demotivated (Kurzban et al,,
2013; van der Linden, 2011). Nevertheless, our models can also be
consistent with the resource theory of mental fatigue but with a
caveat.

The resource theory suggests that a decline in performance
is caused by a mechanism called resource depletion and the
difficulty to allocate resources (Warm et al,, 2008). In addition,
rest can help to improve performance by recovering those re-
sources (Helton & Russell, 2017). With regard to our models, the
decrease in goal activation may reflect resource depletion. While
the resource is depleting, performance will deteriorate.

However, adopting the resource theory to explain our models
requires a critical assumption and a restriction. The recovery of
resources must be a fast process and can be done even while still
doing the task at a lower level of effort regardless of the duration
of the experiments. In addition, in our cognitive architecture used,
i.e., PRIMs, the working memory module is designed not to be
depletable, because if the working memory module were changed
to be depletable, the whole behavior of the model would be un-
stable and might not give the same results. Therefore, depletable
resources as an important aspect in the resource theory is not
applicable in the cognitive architecture that we used.

Journal of Mathematical Psychology 102 {2021) 102540

Therefore, in this paper, we preferred to model mental fatigue
as a result of a decrease in motivation over time, mainly because
it does not require such further assumptions. [n motivation ac-
count, the main control is centered in a mechanism called effort
monitor that decides which goal to be focused on Hockey (2013).

3.4 Comparison with other models

There are two other studies trying to explain the effects
of mental fatigue using computational models. First, Jongman
(1998) explored mental fatigue as a problem of cognitive con-
trol. To lower performance levels, Jongman manipulated a global
parameter in ACT-R named source activation. A lower value of
source activation implies that the chance of retrieving relevant
information to perform a task is low, which represents a low level
of cognitive control. Furthermore, the study assumed that func-
tion of cognitive control is table. As with the present study,
Jongman also incorporated motivation to explain the effects of
mental fatigue by manipulating the value of goal activation.
The study proposed that ones who are motivated will choose
a strategy that maximizes the chance of success over others.
However, Jongman did not implement the manipulation of goal
activation in the study.

Second, Gunzelmann et al. (2011) modeled mental fatigue as a
sleep deprivation phenomenon. To lower performance levels and
simulate a sleep-deprived condition, they manipulated the global
parameter G, which represents the goal value, in ACT-R. They
proposed that the reduction in the G value represents the changes
in the wakefulness level, which caused a delay in the production
cycles of their model. In addition, similar to what we perform in
this study, they compared their model with an empirical study of
Doran, Van Dongen, and Dinges (2001). Even though their com-
parison showed a good fit, they did not incorporate motivation
such as extrinsic rewards in the study.

We were aware that Gunzelmann and colleagues were able to
demonstrate a good fit between their model and the empirical
data. Nevertheless, a situation in which an individual is sleep
deprived for an approximated duration of 88 h, which how their
model was based on, is not an ordinary situation in the workp(Ggs.
Their model may support the account of sleep deprivation as a
factor in @ERtal fatigue (Akerstedt et al., 2004) but may not be
sufficient to explain the effects of motivation on mental fatigue.

Both studies suggest that computational model can help ex-
plain the mechanism of mental fatigue. However, we argue that
mental fatigue is not a problem of resource depletion but more of
a motivation phenomenon, which we illustrated it in our models.

In summary, we have demonstrated that a lower performance
level when an individual is mentally fatigued is mainly due to
motivation, and goal competition is a possible mechanism to ex-
plain the phenomenon. Goal competition is a continuous process
that compares several future goals, and when the main task goal
is perceived to be less valuable, another competing goal may
start winning the competition, causing the individual to invest
less mental effort in the main task and start investing in the
competing goal.

3.5 Limitation, challenge, and future research

In this paper, we show that the goal activation helps us
understand how motivation affects performance in mental fa-
tigue. However, solely adjusting goal activation levels may not
be enough to model changes in performance. There are many
parameters in PRIMs that can affect performance. Therefore, it
is challenging if we want to build a model of another task using
the same parameters.
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Our models are still limited to these tasks. Although adjusting
goal activation values as a way to model mental fatigue showed
good results for the experiments we modeled, it is possible that
this does not directly generalize to other studies.

To build a robust and comprehensive theory of mental fatigue,
for future research, more studies need to investigate relationships
between goal activation, cost-benefit calculations, and perfor-
mance. In addition, future research needs to investigate what
the mechanism is behind the decrease in goal activation values.
Moreover, it is beneficial to test the predictions of our models
in new experiments, for example, to see whether our models’
predictions also hold in studies with no rewards.
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