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Abstract 

The purpose of this analysis is to evaluate the efficiency of the Microbial Fuel Cell (MFC) system incorporated 

with the fermentation process, with the aim of reducing COD and generating electricity, using sugarcane bagasse 

extract as a substrate, in the presence and absence of sugarcane fibers. There is a possibility of turning bagasse 

extract into renewable bioenergy to promote the sustainability of the environment and energy. As a result, the in-

tegration of liquid fermentation (LF) with MFC has improved efficiency compared to semi-solid state fermentation 

(S-SSF). The maximum power generated was 14.88 mW/m2, with an average COD removal of 39.68% per cycle. 

The variation margin of the liquid fermentation pH readings remained slightly decrease, with a slight deflection of 

+0.14 occurring from 4.33. With the absence of bagasse fibers, biofilm can grow freely on the anode surface so that 

the transfer of electrons is fast and produces a relatively high current. Experimental data showed a positive poten-

tial after an effective integration of the LF and MFC systems in the handling of waste. The product is then simul-

taneously converted into electrical energy.   
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Research Article 

1. Introduction 

Microbial fuel cells (MFCs) technology has 

recently experienced tremendous success in the 

conversion of waste to energy [1–3]. The process 

involves applying the concept of waste-to-energy 

(WtE), using microorganisms to catalyze direct 

electricity generation from organic materials, 

including glucose, ethanol, acetate, lactate, bu-
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tyrate, albumin, cysteine, amino acids, cellulose, 

marine sediments, and lignocellulosic sub-

strates [4–9]. Also, various domestic and indus-

trial wastes have been adopted in the process 

[10–13], and the redox technology widely ap-

plied between substrates and microorganisms in 

the production of renewable energy from bio-

mass [14,15]. Moreover, some of the microbes 

used include pure anaerobic bacteria, faculta-

tive anaerobes, and mixed cultures [16–18].  

The production of power, using the MFC sys-

tem, is influenced by the configuration, type, 

and surface area of membranes, and electrodes, 

https://creativecommons.org/licenses/by-sa/4.0
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as well as the type of substrate, fuel concentra-

tion, genus, and electrophilic nature of microor-

ganisms [19–21]. However, there have been 

major challenges while using solid biomass as a 

direct substrate, which consists of polysaccha-

rides, including lignocellulose, starch, chitin, 

and chitosan. These are some of the terrestrial 

biopolymers known to be abundant in nature 

[22,23]. 

Lignocellulose is a biopolymer with high en-

ergy content, although the property of insolu-

bility proves to be problematic [24]. This com-

pound comprises of cellulose, lignin, and hemi-

cellulose, collectively regarded as the main ele-

ments required in the formation of all plant 

material, including tissues [25]. The abundance 

in nature and the possible application as a fuel 

reduces the running costs of MFC. Further-

more, it is possible to obtain lignocellulose 

waste from a variety of sources, including agri-

cultural, domestic (vegetable and fruit), and in-

dustries (food industries linked with wood, veg-

etables, and fruit) [26]. Moreover, cellulose as a 

major natural component, comprises about 40% 

to 50% of the total dry weight [27]. This is 

known to possess a small amount of amor-

phous, and numerous crystalline portions, 

which is more resistant to chemical and enzy-

matic hydrolysis, and consequently affiliated 

with the insolubility [28]. The stubborn nature 

of lignocellulose poses a challenge during use 

as a direct substrate in MFCs. According to 

Mosier et al., pre-treatment is needed to break 

the structural complexity and further facili-

tates the ease of conversion into electricity by 

microorganisms [29]. The cellulose part is spe-

cifically broken down into simpler parts, in-

cluding glucose, through hydrolysis, physical, 

or chemical processes [30]. Due to their maxi-

mum rate, ease of operation, simple operating 

conduction, and environmentally friendly prop-

erties, microbial hydrolysis is assumed to be 

more beneficial [31]. 

One of the most significant agro-industrial 

by-products with large lignocellulose compo-

nent is a residue from sugarcane stalks after 

juice extraction, which is commonly known as 

sugarcane bagasse [32]. In recent years, at-

tempts have been made to boost the utilization 

as fuel for the boilers in industries. However, 

possible applications for other purposes record-

ed encompass the production of electricity, bio-

fuel, pulp, and paper, as well as fermentation-

based products, including alcohol, alkaloids, 

fungi, animal feed enriched with single-cell pro-

tein, and enzymes [33–36]. Despite these bene-

fits, the commercialization of bagasse-based 

processes remains limited, hence this research 

aims at investigating the limitations to the 

scope and the application of bagasse for the bi-

oelectric conversion process. 

Since sugarcane bagasse still contains 

62.21% sugar as cellulose and hemicellulose 

[37], this may be a possible substrate where 

microorganisms can be used as biocatalysts for 

MFCs by utilizing sugar. Yeast from Saccharo-

myces cerevisiae is considered to act as a bio-

catalyst in MFC because it has several ad-

vantages over mixed culture in activated 

sludge, although mixed culture is reported to 

produce better electrical energy. The ad-

vantages of yeast include, has facilitated extra-

cellular electron transfer, robust, fast-growing, 

facultative anaerobe, non-pathogenic, tempera-

ture tolerant microorganism, and easy to get 

[38–41]. Based on that, yeast is worth consider-

ing as a promising biocatalyst in treating sug-

arcane bagasse and converting it into electrical 

energy. 

This research describes the utilization of 

sugar contained in extract of sugarcane ba-

gasse waste as a substrate in the single-

chambered yeast MFC, through a liquid fer-

mentation (LF). The presence of sugarcane fi-

bers in the incubation system was also evaluat-

ed through semi-solid state fermentation (S-

SSF). This S-SSF selection was due to the com-

pact and robust lignocellulosic structure, there-

fore augmenting the difficulty to create a well-

distributed substrate with low water content. 

In addition, slurries with higher water content 

were used in this experiment, while the voltage 

and current density were measured over a cer-

tain period. Also, polarization and Relative De-

crease in Cell Potential (RDCP) were executed 

to evaluate the performance and stability of 

the system during waste conversion, followed 

by the characterization of yeast biofilms 

formed at the anode using a Scanning Electron 

Microscope (SEM). Conversely, the role of bio-

films in sugarcane bagasse application, and the 

correlation with electricity generation was also 

studied. This contributes to the understanding 

and possible management of lignocellulose-

based waste utilization, in order to create more 

practical, effective, and efficient strategies, us-

ing an integrated method with MFC and fer-

mentation processes. 

 

2. Materials and Methods 

2.1 Lignocellulosic Biomass 

Sugarcane bagasse was collected from sug-

arcane juice sellers, most of which were located 

in Serpong, South Tangerang, Indonesia, in 

November 2019. Bagasse, composed of 35 % of 
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cellulose, 32 % of hemicellulose and 33 % of lig-

nin, was cut into small pieces and dried under 

the sun for three days to eliminate the water 

content. They were then placed in a sealed 

plastic bag at a temperature of 25 °C before the 

time of use. 

 

2.2 MFC Reactor Architecture and Operation 

Two identical single-chamber cubic reactors 

made of plexiglass were used in MFCs with an 

active volume of 28 mL, while a plain carbon 

with a projected surface area of 7 cm2 was used 

as both anode and cathode. In addition, Nafion 

117 (3% w/w H2O2, 0.5M H2SO4, and DI water) 

was used as a separator between the two elec-

trodes, acting as a proton diffusion area. Ini-

tially, the raw materials for the LF process in-

tegrated with MFC consist of a mixture of dry 

bagasse and distilled water at a ratio of 1:10, 

which was then homogenized for 60 seconds to 

form slurry using PHILLIPS HR2056. The 

slurry was then filtered using a cheese cloth to 

separate the extract and the fibers. The sugar-

cane bagasse extract contained 12000 ppm of 

glucose after analyzed using glucose sensor 

Gluco Dr AGM-2100 (Gyeonggi-do, South Ko-

rea). The sugarcane bagasse extract was subse-

quently added to 14 mg/L of commercial baker’s 

yeast Saccharomyces cerevisiae (Lessafre, 

Marcq-en-Baroeul, France), adopted as a bio-

catalyst, and incubated semi-aerobically [42–

45], and then the copper wire was used to com-

plete the circuit, followed by the application of 

100 W external resistance. The system was op-

erated in batch mode at 27 °C for three days 

(72 hours) per cycle, for a total of four cycles, 

where the voltage and current density were 

monitored during the incubation time. In the 

first three stages, the medium used was re-

placed by fresh bagasse slurry, containing 

yeast, while the anolyte in the fourth cycle was 

devoid of yeast. A contrast will be made with 

the S-SSF integration with MFC, where ba-

gasse slurry was used as an anolyte without 

any filtration process. 

 

2.3 Electrochemical and Chemical Analysis 

The current and voltage density output dur-

ing incubation process (4x72 hours) are the 

main parameters used to evaluate the perfor-

mance of MFC. This involved collecting the rec-

ord of differences in closed circuit voltage 

(CCV) and current, using a digital multi-meter 

UNI-T UT61E, followed by the calculation of 

current density (mA/m2) by dividing the gener-

ated current by the anodic surface area (m2). 

Furthermore, manual polarization was per-

formed to evaluate MFC behavior, using a re-

sistor set-up of Elenco RS-500, which was set 

within a range of 5 MW to 100 W. The result-

ing performance in terms of treatment efficien-

cy was monitored by analyzing COD, conduc-

tivity, and the pH of anolyte, using Lutron WA-

2015. 

 

2.4 Morphology Analysis 

A JEOL JED-2300 was used to classify elec-

trode surface morphology using SEM images 

and EDX to confirm biofilm formation. The 

SEM device was equipped with an energy dis-

persive X-ray spectroscopy (EDX) unit to verify 

the composition of the surface of the anode. 

The samples, consisting of pre-and post-

incubation anodes, were prepared by applying 

a carbon felt electrode to a carbon-coated two-

sided conductive adhesive tape to increase con-

ductivity. SEM photographs were also obtained 

to ensure the presence of biofilms on electrode 

surfaces. 

 

3. Results and Discussion  

3.1 Mechanism of Semi Fermentation   

Initially, glucose extracted from sugarcane 

bagasse is consumed by the yeast S. cerevisiae 

and converted to pyruvate via the glycolysis 

process, which requires several steps. This in-

volves glyceraldehyde oxidation, where glycerol 

and phosphoenolpyruvate are formed, with tre-

mendous bonding energy and ATP moles re-

sponding to the formation of pyruvate [46]. De-

carboxylation is then accompanied by the gen-

eration of acetaldehyde, which is converted to 

acetic acid under aerobic conditions, while alco-

hol is released in the presence of minimal oxy-

gen as the reaction reaches the anaerobic path-

way [47]. 

The compounds formed by the glycolysis 

process, which are presented in the form of py-

ruvate, appear to enter the oxidative decarbox-

ylation stage and eventually proceed to the 

preparation reaction before entering the Krebs 

cycle. These compounds are then converted to 

acetyl-CoA in the cytosol through acetaldehyde 

by releasing CO2, which then responds to the 

production of acetic acid. This is an oxidation 

process, characterized by the release of elec-

trons, which allows the carbon atom to decline 

and thus transforms acetate to acetyl-CoA, 

which is later used in the Krebs or Tricarbox-

ylic Acid (TCA) cycles. This includes the activa-

tion of Electron Transfer Chain (ETC) process-

es using high-energy molecules where the re-

dox reactions of NAD/NADH, ADP/ATP, and 
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FAD/FADH2 occurred. Several moles of elec-

trons and protons are then formed, which pass 

through the mitochondria and are subsequently 

caught by the endogenous mediator. This sub-

stance operates from the cell to the electrode 

surface and acts as evidence of a lower yield of 

anaerobic microorganism cells compared to aer-

obics. 

The mechanism in the semi-solid state pro-

cess is very similar to the liquid fermentation 

process mentioned above, as some of the acetic 

acid formed can be used in hemicellulose hy-

drolysis in simpler forms of xylitol [25]. Howev-

er, due to the comparatively limited concentra-

tion, this method was not very successful. This 

is consistent with studies by Pandey et al. [48] 

which showed the weak efficacy of yeast in lig-

nocellulose hydrolysis and hence the need for 

genetic mutations. S. cerevisiae also contains a 

limited number of cellulose enzymes that can 

degrade cellulose into simpler pieces that can 

be transformed into energy, but not significant 

[49].   

 

3.2 Electrochemical Characteristic of Yeast 

MFC 

3.2.1 Voltage, current density, and power den-

sity 

In this study, the MFC was inoculated with 

yeast S. cerevisiae as a biocatalyst, with the ex-

pectation of degrading substrate, which serves 

as a source of carbon and nitrogen in the pro-

duction of electrical energy using both LF and 

S-SSF process. The initiation of these processes 

features stagnant electrical voltage, which 

tends to decrease over the first 50 hours. This 

was considered as the microorganisms’ adapta-

tion phase, characterized by the absence of 

yeast biofilm formation on the anode surface, 

followed by a marked increase in cell potential, 

up to the 72nd hour. At this stage, the voltage 

reaches 5 mV at the closed-circuit voltage - 

CCV (100 W), as shown in Figure 1a.  

Conversely, the yeast development is initiat-

ed, as the process enters the logarithmic phase, 

characterized by the increased formation of mi-

croorganism biofilms on the surface of the elec-

trodes, which further enhances the transfer of 

electron to the anode [21,50]. However, within 

the second (72 hours), and the third cycle (144 

hours), the substrate and fresh yeast were in-

serted into the reactor as replacements, and 

the voltage recorded was more or less similar 

with the highest values observed in the 1st cy-

cle. This was considered as the maximum volt-

age produced by bagasse using liquid and semi-

solid state fermentation, although lag phases 

were not discovered in the 2nd and 3rd cycles. 

This is consistent with the previous studies 

demonstrating the absence of a lag phase after 

a refill with fresh media and substrates [51–

53].  

The 4th cycle involved the introduction of 

substrate alone, without yeast as the replace-

ment, which results in the production of slight-

ly lower voltage, which was not significantly 

different from previous values. Therefore, it is 

concluded that the formed biofilm possesses 

the ability to independently convert substrate 

into electrical energy, without adding similar 

external biocatalysts. The results also showed 

the production of slightly higher voltage in 

MFC, utilizing liquid fermentation from sugar-

cane bagasse than in the semi-solid state, with 

a difference of about 1–1.5 mV, under CCV con-

ditions.   

Figure 1b shows the current density record-

ed, using liquid and semi-solid state fermenta-

tion, and the trend observed very similar with 

voltage production. This involved an adapta-

tion phase within the first 50 hours, where the 

yeast biofilm had not formed, followed by the 

production of fluctuating current density, with 

progressive decline. Furthermore, a logarith-

mic period is reached, where higher values of 

up to 305 mA/m2 and 287 mA/m2 were reached 

for MFC with liquid and semi-solid fermenta-

tion, respectively. Meanwhile, further increase 

up to values in the previous cycle was reported 

after the replacement of fresh media and mi-

croorganisms at the beginning of the 2nd and 

3rd cycles, without any lag phase. Therefore, a 

reduction trend is observed subsequently, due 

to substrate depletion, which affects the con-

version process to protons and electrons by 

yeast. In addition, the capture efficiency of 

electrode is vital in the reaction kinetics of 

MFCs, and the electron transfer rate also sig-

nificantly affects the value of coulombic effi-

ciency (CE). Meanwhile, the current density 

produced in the 4th cycle demonstrates the for-

mation of biofilms, which is necessary in the 

conversion process, despite the fact that exter-

nal microorganisms were not added. Generally, 

the current density values produced by both 

raw materials were very similar in all cycles, 

on an average. 

The average power density is obtained 

based on the measurements of voltage and cur-

rent at each instance in time as shown in Fig-

ure 1c. The integration of MFC with liquid fer-

mentation provided values of 1.13±0.23 

mW/m2, which was slightly higher than 

0.84±0.18 mW/m2, recorded with the semi-solid 

state. The commencement of operation fea-
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Figure 1. a) Voltage, b) current density and c) power density of MFC with liquid and semi-solid state 

fermentation process. However, d) shows the individual polarization and power curves, while e) and f) 

show the Relative Decrease in Cell Potential (RDCP). Solid arrows show fresh substrate and yeast re-

placement, while dash arrow shows only substrate replacement. 
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tured the tendency to stagnate, which increase 

after 50 hours, and a similar trend was ob-

served in the current density. Furthermore, the 

2nd and 3rd rounds showed another increase in 

power density, shortly after a replacement with 

fresh media and microorganisms to the reactor. 

Subsequently, another decline is observed after 

the peak is reached, resulting from substrate 

depletion in the MFC system, although the 

power density recorded in the 4th cycle is gener-

ally lower than all previous phases. This oc-

curred because additional fresh microorganism 

was not added. In addition, the yeast was ob-

served to only emanate from biofilm formed on 

the anode surface, from the first to the third cy-

cles, consequently demonstrating the potential 

to generate electrical energy. 

 

3.2.2 Maximum power density and relative de-

crease in cell potential 

Figure 1d shows the polarization curves of 

yeast MFC integrated with LF and S-SSF. 

Therefore, cell voltage was calculated at differ-

ent external resistances, followed by the com-

putation of current and power density, accord-

ing to the explanation in the previous section. 

In addition, the maximum power density 

(MPD) reached 14.88 mW/m2 after applied ex-

ternal resistance of 10 KW at a current density 

of 122 mA/m2, for liquid fermentation. It was 

about 1.7-folds higher than MPD and current 

density for the solid-state, at 8.70 mW/m2 and 

93.3 mA/m2, respectively.  

It is crucial to determine the systems’ inter-

nal resistance based on the slope of the polari-

zation curve, and all values obtained were 

about 1463 and 160 W for LF and S-SSF, re-

spectively. These values are in line with the 

reference range [7,54]. Also, the use of molas-

ses as a substrate is known to produce higher 

MPD, compared to sugarcane bagasse, as 

Zhang et al. recorded a maximum value of 

1410.2 mW/m2 from the wastewater, using 

UASB-MFC-BAF system [55]. However, a 

study by Hassan et al. produced an MPD of 

188.5 mW/m2 [56], which was attributed to sev-

eral factors, including (1) the presentation of 

molasses in a liquid form and the homogeneity 

with the electrolyte solution. This tends to in-

crease the rate of substrate consumption by mi-

croorganisms and electron transfer. (2) molas-

ses possesses more organic residue content 

than bagasse. (3) the activated sludge consist-

ing of several types of microorganisms was 

used as a biocatalyst, which was certainly more 

concentrated than the yeast applied in the cur-

rent research. Therefore, the resulting MPD 

was comparable with other studies, as shown 

in Table 1. This variation was influenced by 

Biocatalyst Substrate Configuration 

Max. Power 

Density 

(mW/m2) 

Ref. 

E. cloacae cellulose two-chambered      MFC; electrodes-

carbon       cloth and carbon fiber;       

catholyte: K3Fe(CN)6           two-

chambered MFC; electrodes:   carbon 

paper; catholyte: K3Fe(CN)6 

5.4 [57] 

Geobacter 

sulfurreducens 

cellulose two-chambered  MFC; electrodes – 

graphite fibers; catholyte: K3Fe(CN)6 

10 [58] 

Enterobacter 

cloacae 

Malt extract two-chambered MFC; electrodes - graph-

ite rods, graphite plates; mediator: me-

thyl viologen; catholyte: aerated PBS 

9.3 [59] 

Saccharomyces 

cerevisiae 

Glucose two-chambered MFC; electrodes - graph-

ite plates; catholyte: aerated water 

16 [60] 

Geobacter 

metallireducens 

Corncob one chambered; electrodes - graphite rod; 

air cathode 

7.18 [61] 

Native bacteria 

in activated 

sludge 

cellulose two-chambered MFC; graphite brush 

and carbon paper; catholyte: aerated wa-

ter 

12 [62] 

Saccharomyces 

cerevisiae 

agricultural 

and livestock 

industry waste 

two-chambered MFC; electrodes - carbon 

paper and carbon plate 

5.1 [63] 

Table 1. Comparison of MPD with other MFC research 
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the nature of microorganisms used as biocata-

lyst, membrane separator, electrode material, 

and the MFC system architecture, assumed to 

have a direct effect on the results. 

The maximum sustainable electricity gener-

ated in a system on external loads indicates 

fuel cell efficiency [64]. Meanwhile, surface an-

ode potential is one of the elements used to de-

termine bacterial energy acquisition from a 

thermodynamic perspective [65]. This was 

identified as the point where bacteria obtain 

more energy and facilitate extracellular elec-

tron transfer, based on the terminal electron 

acceptor capacity [66]. In addition, the Relative 

Decrease in Cell Potential (RDCP) is a new ap-

proach adapted from Relative Decrease in An-

ode Potential (RDAP). RDAP is a function of 

external resistance which is applied to evalu-

ate the maximum sustainability of MFC, based 

on the ability to generate electricity [67]. The 

results are shown in Figure 1 e-f were 900 kΩ 

and 750 kΩ, obtained using liquid and semi-

Figure 2. SEM images of MFC‘s anode a) before and after incubation process with b) liquid and c) semi-

solid state fermentation, while d) – f) show the EDX measurement, respectively. 
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solid state fermentation, respectively. There-

fore, the conditions at the cathode for both sys-

tems are considered to be similar, with poten-

tial that is proportional to the resistance, while 

a higher oxidation tendency at the anode pro-

vides more energy from the biocatalyst activity 

[68]. This is particularly associated with the 

ability for the microorganism to adapt, espe-

cially when there is faster electron release, 

which contributes to higher electricity and en-

ergy generation. 

 

3.3 Biofilm Formation in the Anode of MFC 

Yeast 

Figure 2a-c demonstrates the anode mor-

phology before and after incubation with the 

liquid and semi-solid state fermentation meth-

od. This involved three phases, including (1) an 

initially visible plain carbon fiber without bio-

films (Figure 2a). (2), the appearance of numer-

ous spots, indicating an interaction between 

yeast and carbon fiber (Figure 2b). This surface 

manifestation was also covered by exopolysac-

charides, which denote the formation of biofilm 

layer, characterized by high conductivity, need-

ed to accelerate the rate of electron transfer 

from yeast to the anode surface. The ease of 

movement is facilitated using pili, on instances 

when the biofilm is available. (3) Figure 2c 

shows the sugarcane bagasse fibers as slightly 

flattened, which adds to the fiber in the carbon 

felt, although yeast developed better attach-

ment with the sugarcane surface. This is proof 

of adverse effects on the production rates of 

electricity, as shown by the results of the elec-

trochemical characterization observed in the 

previous section. The MFCs with liquid fermen-

tation tend to generate more effectively, with 

higher amounts than the semi-solid state. In 

addition, wider distance between the surface of 

the anode and the yeast, leads to difficulties in 

the transfer of electrons, despite the existence 

of a biofilm.  

Figures 2d-f shows the analysis of the ele-

ments in the anode before and after incubation 

during the MFC process, with both liquid and 

semi-solid state fermentation. The results are 

demonstrated in plain carbon felt (Figure 2d), 

where the dominant elements include Carbon 

(92.75%) as the main component, and oxygen 

(7.25%), which is present because of the fabri-

cation/synthesis process. In addition, elements 

other than carbon (49.19%) and oxygen 

(43.79%) were detected at the anode after the 

incubation process, after the liquid fermenta-

tion method (Figure 2e). These include sodium 

(0.55%), silicon (0.71%), sulphur (1.59%), chlo-

rine (0.56%), and potassium (3.60%), where 

sulfur and potassium indicate the presence of a 

yeast biofilm, known to be the metabolism re-

sult [69]. Meanwhile, the increase in O shows 

the presence of exo-polysaccharide, being the 

main constituent of biofilm, which is congruent 

with the results of SEM characterization, 

where yeast attaches to carbon fiber surfaces 

and then form biofilms. The elements of carbon 

(37.59%), oxygen (45.59%), sodium (1.87%), 

aluminum (0.92%), silicon (1.23%), sulphur 

(0.52%), chlorine (0.50%), potassium (1.17%), 

calcium (0.77%), chromium (1.89%), iron 

(7.69%) were identified at the anode of MFC in-

tegrated with semi-solid state fermentation 

(Figure 2f). Therefore, the elevated mass per-

centage of oxygen, which is higher than carbon, 

correlates with the presence of lignocellulose 

attached to the surface of the carbon felt. Addi-

tionally, the sodium, aluminum, silicon, chlo-

rine, calcium, chromium, and iron suggest the 

entry of impurities, while the decreased 

amount of sulphur and potassium denotes a de-

ficiency in yeast biofilm formation, based on 

the semi-solid state fermentation. 

 

3.4 Organics Removal, pH, and Conductivity 

during the Incubation Process 

Figure 3a is a highlight of substrate degra-

dation, which demonstrates the removal of 

COD in sugarcane bagasse, using the liquid 

and semi-solid state fermentation method. 

Conversely, the microenvironment tends to in-

fluence substrate degradation ability, while 

other external factors include the operating 

conditions, and behavior of biocatalyst. In addi-

tion, electrogenesis has been identified as one 

of the parameters used to measure the effect 

and extent of microorganism degradation activ-

ity on substrate, during the production of pro-

tons and electrons. The depletion in microbial 

fuel cells was evaluated regularly within a 

time interval of 72 hours, which was consid-

ered as 1 cycle. 

In the batch experiments, there was a con-

tinuous increase in the removal of COD in each 

cycle, using liquid fermentation system. Fur-

thermore, the first cycle (first 3 days) led to 

about 36.36% decline from 14700 mg/L to 9355 

mg/L, which gradually increased by 46.21, 

37.88, and 38.26, in the second, third, and 

fourth cycle, respectively. Conversely, the rec-

ords from the semi-solid state reached 26.25% 

from 15000 mg/L to 11062 mg/L, and an in-

crease in percentage was observed in the sec-

ond and third cycles, which declined during the 

fourth, at 30.12%, 31.88%, and 27.50%, respec-
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tively. This reduction was attributed to the for-

mation of very few biofilms, following the re-

placement with substrate, which was free-form 

yeast. However, the amount of removed materi-

als was higher than the results conducted by 

Hassan et al. using a culture of cellulose as a 

substrate in two-chambered MFCs, where 

29.33% was recorded after ten days of opera-

tion [7]. Hence, the production of bioelectricity 

from sugarcane bagasse shows the organic com-

ponent biodegradability, and also the consump-

tion tendency by of yeast S. cerevisiae is needed 

to stimulate the conversions needed. 

Figure 3b shows the pH variation of yeast 

MFCs with semi-solid state and liquid fermen-

tation, which was lower in the latter, with an 

average value of ±0.14. This occurred because 

of acetic acid production in semi-aerobic condi-

tions, which is then transformed into acetyl co-

A, required in the Krebs cycle, and prolonged 

exposure rates lead to further accumulation of 

acetic acid. Moreover, the reduced pH was also 

affiliated with the accumulation of protons (H+) 

in the anode chamber, due to the slower rate of 

protons migration to the cathode chamber 

through the separating membrane. Conversely, 

the pH in semi-solid state fermentation was 

slightly increased in each subsequent cycle, 

with an average of ±0.09. This manifestation 

was associated with three factors, including: 

(1) the use of acetic acid to degrade lignocellu-

lose [25], followed by the absence of acid accu-

mulation in the system; (2) The lignocellulose 

reduction activity of yeast during the formation 

of simple compounds requires a relatively long 

time of exposure, which is needed to produce 

sufficient nitrogen waste needed for the gener-

ation of higher pH [70,71]; (3) The acetate was 

widely used in the degradation process, rather 

than being converted to acetyl Co-A, hence the 

Krebs cycle was sub-optimal, and followed by 

the production of a few protons. These subse-

quently accumulated to quantities that were 

relatively lower than nitrogen waste, leading to 

a continuous increase pH, despite the fact that 

protons were in the anode chamber. 

The conductivity of electrolyte is vital in 

MFC, being one of the factors influencing the 

rate of electron transfer from microorganisms 

to anode. Figure 3c shows an increase in elec-

trolyte conductivity on the anode side (anolyte), 

with a value of 2 µS/cm, following the fermen-

tation process. This upsurge occurred because 

of proton accumulation, which indirectly affects 

the rate of electron transfer from microbes to 

anode and subsequently to the cathode, 

through the external circuit. However, a short-

age in protons required for the Oxygen Reduc-

tion Reaction (ORR) process was reported at 

the cathode, which resulted in lower voltage, as 

well as current and power density. 

Figure 3. a) COD removal, b) pH and c) electrical conductivity of MFC's anolyte during incubation with 

liquid and semi-solid state fermentation process. 
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4. Conclusion 

This research shows the performance of the 

MFC system integrated with the fermentation 

of sugarcane bagasse to generate electricity di-

rectly by using Saccharomyces cerevisiae. The 

maximum power density of 14.88 mW/m2 and 

8.70 mW/m2 was achieved using LF and S-SSF, 

with an average COD removal per cycle of 

39.68 and 28.94%, respectively. In addition, the 

pH decreased after liquid fermentation due to 

the presence of acid during yeast metabolism. 

However, due to the effects of nitrogen waste 

created by the lignocellulose degradation pro-

cess, a slightly increased pH value was ob-

served in the semi-solid state. The results 

above show that the integration of MFC sys-

tems with LF results in more impressive per-

formance than S-SSF. The presence of fibers in 

the process of S-SSF makes the distance be-

tween the yeast and the electrode surface, with 

the purpose of the electron transfer process was 

slow. 
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